Question
Factor the expression
3(x2−2x−5)
Evaluate
3x2−6x−15
Solution
3(x2−2x−5)
Show Solution

Find the roots
x1=1−6,x2=1+6
Alternative Form
x1≈−1.44949,x2≈3.44949
Evaluate
3x2−6x−15
To find the roots of the expression,set the expression equal to 0
3x2−6x−15=0
Substitute a=3,b=−6 and c=−15 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3(−15)
Simplify the expression
x=66±(−6)2−4×3(−15)
Simplify the expression
More Steps

Evaluate
(−6)2−4×3(−15)
Multiply
More Steps

Multiply the terms
4×3(−15)
Rewrite the expression
−4×3×15
Multiply the terms
−180
(−6)2−(−180)
Rewrite the expression
62−(−180)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+180
Evaluate the power
36+180
Add the numbers
216
x=66±216
Simplify the radical expression
More Steps

Evaluate
216
Write the expression as a product where the root of one of the factors can be evaluated
36×6
Write the number in exponential form with the base of 6
62×6
The root of a product is equal to the product of the roots of each factor
62×6
Reduce the index of the radical and exponent with 2
66
x=66±66
Separate the equation into 2 possible cases
x=66+66x=66−66
Simplify the expression
More Steps

Evaluate
x=66+66
Divide the terms
More Steps

Evaluate
66+66
Rewrite the expression
66(1+6)
Reduce the fraction
1+6
x=1+6
x=1+6x=66−66
Simplify the expression
More Steps

Evaluate
x=66−66
Divide the terms
More Steps

Evaluate
66−66
Rewrite the expression
66(1−6)
Reduce the fraction
1−6
x=1−6
x=1+6x=1−6
Solution
x1=1−6,x2=1+6
Alternative Form
x1≈−1.44949,x2≈3.44949
Show Solution
