Question
Factor the expression
3(x2−25x−50)
Evaluate
3x2−75x−150
Solution
3(x2−25x−50)
Show Solution

Find the roots
x1=225−533,x2=225+533
Alternative Form
x1≈−1.861407,x2≈26.861407
Evaluate
3x2−75x−150
To find the roots of the expression,set the expression equal to 0
3x2−75x−150=0
Substitute a=3,b=−75 and c=−150 into the quadratic formula x=2a−b±b2−4ac
x=2×375±(−75)2−4×3(−150)
Simplify the expression
x=675±(−75)2−4×3(−150)
Simplify the expression
More Steps

Evaluate
(−75)2−4×3(−150)
Multiply
More Steps

Multiply the terms
4×3(−150)
Rewrite the expression
−4×3×150
Multiply the terms
−1800
(−75)2−(−1800)
Rewrite the expression
752−(−1800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
752+1800
Evaluate the power
5625+1800
Add the numbers
7425
x=675±7425
Simplify the radical expression
More Steps

Evaluate
7425
Write the expression as a product where the root of one of the factors can be evaluated
225×33
Write the number in exponential form with the base of 15
152×33
The root of a product is equal to the product of the roots of each factor
152×33
Reduce the index of the radical and exponent with 2
1533
x=675±1533
Separate the equation into 2 possible cases
x=675+1533x=675−1533
Simplify the expression
More Steps

Evaluate
x=675+1533
Divide the terms
More Steps

Evaluate
675+1533
Rewrite the expression
63(25+533)
Cancel out the common factor 3
225+533
x=225+533
x=225+533x=675−1533
Simplify the expression
More Steps

Evaluate
x=675−1533
Divide the terms
More Steps

Evaluate
675−1533
Rewrite the expression
63(25−533)
Cancel out the common factor 3
225−533
x=225−533
x=225+533x=225−533
Solution
x1=225−533,x2=225+533
Alternative Form
x1≈−1.861407,x2≈26.861407
Show Solution
