Question
Find the roots
x1=69−6933,x2=69+6933
Alternative Form
x1≈−12.37744,x2≈15.37744
Evaluate
3x2−9x−571
To find the roots of the expression,set the expression equal to 0
3x2−9x−571=0
Substitute a=3,b=−9 and c=−571 into the quadratic formula x=2a−b±b2−4ac
x=2×39±(−9)2−4×3(−571)
Simplify the expression
x=69±(−9)2−4×3(−571)
Simplify the expression
More Steps

Evaluate
(−9)2−4×3(−571)
Multiply
More Steps

Multiply the terms
4×3(−571)
Rewrite the expression
−4×3×571
Multiply the terms
−6852
(−9)2−(−6852)
Rewrite the expression
92−(−6852)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
92+6852
Evaluate the power
81+6852
Add the numbers
6933
x=69±6933
Separate the equation into 2 possible cases
x=69+6933x=69−6933
Solution
x1=69−6933,x2=69+6933
Alternative Form
x1≈−12.37744,x2≈15.37744
Show Solution
