Question
Simplify the expression
3x7−7x
Evaluate
3x2×x5−x×7
Multiply
More Steps

Multiply the terms
3x2×x5
Multiply the terms with the same base by adding their exponents
3x2+5
Add the numbers
3x7
3x7−x×7
Solution
3x7−7x
Show Solution

Factor the expression
x(3x6−7)
Evaluate
3x2×x5−x×7
Multiply
More Steps

Multiply the terms
3x2×x5
Multiply the terms with the same base by adding their exponents
3x2+5
Add the numbers
3x7
3x7−x×7
Use the commutative property to reorder the terms
3x7−7x
Rewrite the expression
x×3x6−x×7
Solution
x(3x6−7)
Show Solution

Find the roots
x1=−361701,x2=0,x3=361701
Alternative Form
x1≈−1.151674,x2=0,x3≈1.151674
Evaluate
3x2×x5−x×7
To find the roots of the expression,set the expression equal to 0
3x2×x5−x×7=0
Multiply
More Steps

Multiply the terms
3x2×x5
Multiply the terms with the same base by adding their exponents
3x2+5
Add the numbers
3x7
3x7−x×7=0
Use the commutative property to reorder the terms
3x7−7x=0
Factor the expression
x(3x6−7)=0
Separate the equation into 2 possible cases
x=03x6−7=0
Solve the equation
More Steps

Evaluate
3x6−7=0
Move the constant to the right-hand side and change its sign
3x6=0+7
Removing 0 doesn't change the value,so remove it from the expression
3x6=7
Divide both sides
33x6=37
Divide the numbers
x6=37
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±637
Simplify the expression
More Steps

Evaluate
637
To take a root of a fraction,take the root of the numerator and denominator separately
6367
Multiply by the Conjugate
63×63567×635
Simplify
63×63567×6243
Multiply the numbers
63×63561701
Multiply the numbers
361701
x=±361701
Separate the equation into 2 possible cases
x=361701x=−361701
x=0x=361701x=−361701
Solution
x1=−361701,x2=0,x3=361701
Alternative Form
x1≈−1.151674,x2=0,x3≈1.151674
Show Solution
