Question
{3x2y=119yx−3y119yx−3y=11
Solve the system of equations
(x1,y1)=(12852200279347+18141432−324−141432,54155573−11141432−324)(x2,y2)=(12852200279347−18141432−324−141432,54155573+11141432−324)
Evaluate
{3x2y=119yx−3y119yx−3y=11
Solve the equation for x
More Steps

Evaluate
119yx−3y=11
Move the expression to the right-hand side and change its sign
119yx=11+3y
Divide both sides
119y119yx=119y11+3y
Divide the numbers
x=119y11+3y
{3x2y=119yx−3yx=119y11+3y
Substitute the given value of x into the equation 3x2y=119yx−3y
3(119y11+3y)2y=119y×119y11+3y−3y
Simplify
More Steps

Evaluate
3(119y11+3y)2y
Multiply the terms
More Steps

Evaluate
(119y11+3y)2y
Rewrite the expression
14161y2(11+3y)2×y
Reduce the fraction
14161y(11+3y)2×1
Any expression multiplied by 1 remains the same
14161y121+66y+9y2
3×14161y121+66y+9y2
Multiply the terms
More Steps

Multiply the terms
14161y121+66y+9y2×3
Multiply the terms
14161y(121+66y+9y2)×3
Multiply the terms
14161y3(121+66y+9y2)
14161y3(121+66y+9y2)
14161y3(121+66y+9y2)=119y×119y11+3y−3y
Simplify
More Steps

Evaluate
119y×119y11+3y−3y
Multiply the terms
More Steps

Multiply the terms
119y×119y11+3y
Cancel out the common factor 119
y×y11+3y
Cancel out the common factor y
1×(11+3y)
Multiply the terms
11+3y
11+3y−3y
The sum of two opposites equals 0
More Steps

Evaluate
3y−3y
Collect like terms
(3−3)y
Add the coefficients
0×y
Calculate
0
11+0
Remove 0
11
14161y3(121+66y+9y2)=11
Cross multiply
3(121+66y+9y2)=14161y×11
Simplify the equation
3(121+66y+9y2)=155771y
Expand the expression
More Steps

Evaluate
3(121+66y+9y2)
Apply the distributive property
3×121+3×66y+3×9y2
Multiply the numbers
363+3×66y+3×9y2
Multiply the numbers
363+198y+3×9y2
Multiply the numbers
363+198y+27y2
363+198y+27y2=155771y
Move the expression to the left side
363+198y+27y2−155771y=0
Subtract the terms
More Steps

Evaluate
198y−155771y
Collect like terms by calculating the sum or difference of their coefficients
(198−155771)y
Subtract the numbers
−155573y
363−155573y+27y2=0
Rewrite in standard form
27y2−155573y+363=0
Substitute a=27,b=−155573 and c=363 into the quadratic formula y=2a−b±b2−4ac
y=2×27155573±(−155573)2−4×27×363
Simplify the expression
y=54155573±(−155573)2−4×27×363
Simplify the expression
More Steps

Evaluate
(−155573)2−4×27×363
Multiply the terms
More Steps

Multiply the terms
4×27×363
Multiply the terms
108×363
Multiply the numbers
39204
(−155573)2−39204
Calculate
1555732−39204
y=54155573±1555732−39204
Simplify the radical expression
y=54155573±11141432−324
Separate the equation into 2 possible cases
y=54155573+11141432−324y=54155573−11141432−324
Evaluate the logic
y=54155573+11141432−324∪y=54155573−11141432−324
Rearrange the terms
{x=119y11+3yy=54155573+11141432−324∪{x=119y11+3yy=54155573−11141432−324
Calculate
More Steps

Evaluate
{x=119y11+3yy=54155573+11141432−324
Substitute the given value of y into the equation x=119y11+3y
x=119×54155573+11141432−32411+3×54155573+11141432−324
Calculate
x=12852200279347−18141432−324−141432
Calculate
{x=12852200279347−18141432−324−141432y=54155573+11141432−324
{x=12852200279347−18141432−324−141432y=54155573+11141432−324∪{x=119y11+3yy=54155573−11141432−324
Calculate
More Steps

Evaluate
{x=119y11+3yy=54155573−11141432−324
Substitute the given value of y into the equation x=119y11+3y
x=119×54155573−11141432−32411+3×54155573−11141432−324
Calculate
x=12852200279347+18141432−324−141432
Calculate
{x=12852200279347+18141432−324−141432y=54155573−11141432−324
{x=12852200279347−18141432−324−141432y=54155573+11141432−324∪{x=12852200279347+18141432−324−141432y=54155573−11141432−324
Calculate
{x=12852200279347+18141432−324−141432y=54155573−11141432−324∪{x=12852200279347−18141432−324−141432y=54155573+11141432−324
Check the solution
More Steps

Check the solution
⎩⎨⎧3(12852200279347+18141432−324−141432)2×54155573−11141432−324=119×54155573−11141432−324×12852200279347+18141432−324−141432−3×54155573−11141432−324119×54155573−11141432−324×12852200279347+18141432−324−141432−3×54155573−11141432−324=11
Simplify
{11=1111=11
Evaluate
true
{x=12852200279347+18141432−324−141432y=54155573−11141432−324∪{x=12852200279347−18141432−324−141432y=54155573+11141432−324
Check the solution
More Steps

Check the solution
⎩⎨⎧3(12852200279347−18141432−324−141432)2×54155573+11141432−324=119×54155573+11141432−324×12852200279347−18141432−324−141432−3×54155573+11141432−324119×54155573+11141432−324×12852200279347−18141432−324−141432−3×54155573+11141432−324=11
Simplify
{11=1111=11
Evaluate
true
{x=12852200279347+18141432−324−141432y=54155573−11141432−324∪{x=12852200279347−18141432−324−141432y=54155573+11141432−324
Solution
(x1,y1)=(12852200279347+18141432−324−141432,54155573−11141432−324)(x2,y2)=(12852200279347−18141432−324−141432,54155573+11141432−324)
Show Solution
