Question
Factor the expression
x2(3x−5−4x2)
Evaluate
3x3−5x2−4x4
Rewrite the expression
x2×3x−x2×5−x2×4x2
Solution
x2(3x−5−4x2)
Show Solution

Find the roots
x1=83−871i,x2=83+871i,x3=0
Alternative Form
x1≈0.375−1.053269i,x2≈0.375+1.053269i,x3=0
Evaluate
3x3−5x2−4x4
To find the roots of the expression,set the expression equal to 0
3x3−5x2−4x4=0
Factor the expression
x2(3x−5−4x2)=0
Separate the equation into 2 possible cases
x2=03x−5−4x2=0
The only way a power can be 0 is when the base equals 0
x=03x−5−4x2=0
Solve the equation
More Steps

Evaluate
3x−5−4x2=0
Rewrite in standard form
−4x2+3x−5=0
Multiply both sides
4x2−3x+5=0
Substitute a=4,b=−3 and c=5 into the quadratic formula x=2a−b±b2−4ac
x=2×43±(−3)2−4×4×5
Simplify the expression
x=83±(−3)2−4×4×5
Simplify the expression
More Steps

Evaluate
(−3)2−4×4×5
Multiply the terms
(−3)2−80
Rewrite the expression
32−80
Evaluate the power
9−80
Subtract the numbers
−71
x=83±−71
Simplify the radical expression
More Steps

Evaluate
−71
Evaluate the power
71×−1
Evaluate the power
71×i
x=83±71×i
Separate the equation into 2 possible cases
x=83+71×ix=83−71×i
Simplify the expression
x=83+871ix=83−71×i
Simplify the expression
x=83+871ix=83−871i
x=0x=83+871ix=83−871i
Solution
x1=83−871i,x2=83+871i,x3=0
Alternative Form
x1≈0.375−1.053269i,x2≈0.375+1.053269i,x3=0
Show Solution
