Question
Simplify the expression
3x3−2x2−486x
Evaluate
3x3−2x2−27x×18
Solution
3x3−2x2−486x
Show Solution

Factor the expression
x(3x2−2x−486)
Evaluate
3x3−2x2−27x×18
Multiply the terms
3x3−2x2−486x
Rewrite the expression
x×3x2−x×2x−x×486
Solution
x(3x2−2x−486)
Show Solution

Find the roots
x1=31−1459,x2=0,x3=31+1459
Alternative Form
x1≈−12.398953,x2=0,x3≈13.06562
Evaluate
3x3−2x2−27x×18
To find the roots of the expression,set the expression equal to 0
3x3−2x2−27x×18=0
Multiply the terms
3x3−2x2−486x=0
Factor the expression
x(3x2−2x−486)=0
Separate the equation into 2 possible cases
x=03x2−2x−486=0
Solve the equation
More Steps

Evaluate
3x2−2x−486=0
Substitute a=3,b=−2 and c=−486 into the quadratic formula x=2a−b±b2−4ac
x=2×32±(−2)2−4×3(−486)
Simplify the expression
x=62±(−2)2−4×3(−486)
Simplify the expression
More Steps

Evaluate
(−2)2−4×3(−486)
Multiply
(−2)2−(−5832)
Rewrite the expression
22−(−5832)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+5832
Evaluate the power
4+5832
Add the numbers
5836
x=62±5836
Simplify the radical expression
More Steps

Evaluate
5836
Write the expression as a product where the root of one of the factors can be evaluated
4×1459
Write the number in exponential form with the base of 2
22×1459
The root of a product is equal to the product of the roots of each factor
22×1459
Reduce the index of the radical and exponent with 2
21459
x=62±21459
Separate the equation into 2 possible cases
x=62+21459x=62−21459
Simplify the expression
x=31+1459x=62−21459
Simplify the expression
x=31+1459x=31−1459
x=0x=31+1459x=31−1459
Solution
x1=31−1459,x2=0,x3=31+1459
Alternative Form
x1≈−12.398953,x2=0,x3≈13.06562
Show Solution
