Question
Simplify the expression
3x4−x3−256x2−4
Evaluate
3x4−x3−16x2×8x2×x22−4
Solution
More Steps

Evaluate
−16x2×8x2×x22
Multiply the terms
−128x2×x2×x22
Multiply the terms with the same base by adding their exponents
−128x2+2×x22
Add the numbers
−128x4×x22
Multiply the terms
More Steps

Multiply the terms
128x4×x22
Cancel out the common factor x2
128x2×2
Multiply the terms
256x2
−256x2
3x4−x3−256x2−4
Show Solution

Find the excluded values
x=0
Evaluate
3x4−x3−16x2×8x2×x22−4
To find the excluded values,set the denominators equal to 0
x2=0
Solution
x=0
Show Solution

Find the roots
x1≈−9.073317,x2≈9.40659
Evaluate
3x4−x3−16x2×8x2×x22−4
To find the roots of the expression,set the expression equal to 0
3x4−x3−16x2×8x2×x22−4=0
The only way a power can not be 0 is when the base not equals 0
3x4−x3−16x2×8x2×x22−4=0,x=0
Calculate
3x4−x3−16x2×8x2×x22−4=0
Multiply
More Steps

Multiply the terms
16x2×8x2×x22
Multiply the terms
128x2×x2×x22
Multiply the terms with the same base by adding their exponents
128x2+2×x22
Add the numbers
128x4×x22
Cancel out the common factor x2
128x2×2
Multiply the terms
256x2
3x4−x3−256x2−4=0
Calculate
x≈9.40659x≈−9.073317
Check if the solution is in the defined range
x≈9.40659x≈−9.073317,x=0
Find the intersection of the solution and the defined range
x≈9.40659x≈−9.073317
Solution
x1≈−9.073317,x2≈9.40659
Show Solution
