Question
Simplify the expression
12x4−33x2
Evaluate
3x(4x3−11x)
Apply the distributive property
3x×4x3−3x×11x
Multiply the terms
More Steps

Evaluate
3x×4x3
Multiply the numbers
12x×x3
Multiply the terms
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
12x4
12x4−3x×11x
Solution
More Steps

Evaluate
3x×11x
Multiply the numbers
33x×x
Multiply the terms
33x2
12x4−33x2
Show Solution

Factor the expression
3x2(4x2−11)
Evaluate
3x(4x3−11x)
Factor the expression
More Steps

Evaluate
4x3−11x
Rewrite the expression
x×4x2−x×11
Factor out x from the expression
x(4x2−11)
3x×x(4x2−11)
Solution
3x2(4x2−11)
Show Solution

Find the roots
x1=−211,x2=0,x3=211
Alternative Form
x1≈−1.658312,x2=0,x3≈1.658312
Evaluate
3x(4x3−11x)
To find the roots of the expression,set the expression equal to 0
3x(4x3−11x)=0
Elimination the left coefficient
x(4x3−11x)=0
Separate the equation into 2 possible cases
x=04x3−11x=0
Solve the equation
More Steps

Evaluate
4x3−11x=0
Factor the expression
x(4x2−11)=0
Separate the equation into 2 possible cases
x=04x2−11=0
Solve the equation
More Steps

Evaluate
4x2−11=0
Move the constant to the right-hand side and change its sign
4x2=0+11
Removing 0 doesn't change the value,so remove it from the expression
4x2=11
Divide both sides
44x2=411
Divide the numbers
x2=411
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±411
Simplify the expression
x=±211
Separate the equation into 2 possible cases
x=211x=−211
x=0x=211x=−211
x=0x=0x=211x=−211
Find the union
x=0x=211x=−211
Solution
x1=−211,x2=0,x3=211
Alternative Form
x1≈−1.658312,x2=0,x3≈1.658312
Show Solution
