Question
Solve the inequality
Solve for x
Solve for s
Solve for y
x>−3∣y∣3sy,y>0∩x<3∣y∣3sy,y>0∪x>3∣y∣3sy,y<0∪x<−3∣y∣3sy,y<0∪x>−3∣y∣3sy,y>0∩x<3∣y∣3sy,y>0
Evaluate
3x×xy<s
Multiply the terms
3x2y<s
Rewrite the expression
3yx2<s
Divide both sides
3y3yx2<3ys
Divide the numbers
x2<3ys
Rewrite the inequalities
{x2<3ysy>0{x2>3ysy<0
Calculate
More Steps

Calculate
x2<3ys
Take the 2-th root on both sides of the inequality
x2<3ys
Calculate
∣x∣<3∣y∣3sy
Separate the inequality into 2 possible cases
⎩⎨⎧x<3∣y∣3syx>−3∣y∣3sy
Find the intersection
x<3∣y∣3sy∩x>−3∣y∣3sy
{x<3∣y∣3sy∩x>−3∣y∣3syy>0{x2>3ysy<0
Calculate
More Steps

Calculate
x2>3ys
Take the 2-th root on both sides of the inequality
x2>3ys
Calculate
∣x∣>3∣y∣3sy
Separate the inequality into 2 possible cases
x>3∣y∣3syx<−3∣y∣3sy
{x<3∣y∣3sy∩x>−3∣y∣3syy>0⎩⎨⎧x>3∣y∣3syx<−3∣y∣3syy<0
Calculate
{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0⎩⎨⎧x>3∣y∣3syx<−3∣y∣3syy<0
Calculate
{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0{x>3∣y∣3syy<0{x<−3∣y∣3syy<0
Rearrange the terms
{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0∪{x>3∣y∣3syy<0∪{x<−3∣y∣3syy<0∪{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0
Check if the solution is in the defined range
{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0∪{x>3∣y∣3syy<0∪{x<−3∣y∣3syy<0∪{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0,y=0
Find the intersection of the solution and the defined range
{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0∪{x>3∣y∣3syy<0∪{x<−3∣y∣3syy<0∪{x>−3∣y∣3syy>0∩{x<3∣y∣3syy>0
Solution
x>−3∣y∣3sy,y>0∩x<3∣y∣3sy,y>0∪x>3∣y∣3sy,y<0∪x<−3∣y∣3sy,y<0∪x>−3∣y∣3sy,y>0∩x<3∣y∣3sy,y>0
Show Solution
