Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=521−591,x2=521+591
Alternative Form
x1≈−0.662098,x2≈9.062098
Evaluate
3x−51x−3=2x×61x−5
Subtract the terms
More Steps

Evaluate
3x−51x
Collect like terms by calculating the sum or difference of their coefficients
(3−51)x
Subtract the numbers
More Steps

Evaluate
3−51
Reduce fractions to a common denominator
53×5−51
Write all numerators above the common denominator
53×5−1
Multiply the numbers
515−1
Subtract the numbers
514
514x
514x−3=2x×61x−5
Multiply
More Steps

Evaluate
2x×61x
Multiply the terms
More Steps

Evaluate
2×61
Reduce the numbers
1×31
Multiply the numbers
31
31x×x
Multiply the terms
31x2
514x−3=31x2−5
Swap the sides
31x2−5=514x−3
Move the expression to the left side
31x2−2−514x=0
Rewrite in standard form
31x2−514x−2=0
Multiply both sides
15(31x2−514x−2)=15×0
Calculate
5x2−42x−30=0
Substitute a=5,b=−42 and c=−30 into the quadratic formula x=2a−b±b2−4ac
x=2×542±(−42)2−4×5(−30)
Simplify the expression
x=1042±(−42)2−4×5(−30)
Simplify the expression
More Steps

Evaluate
(−42)2−4×5(−30)
Multiply
More Steps

Multiply the terms
4×5(−30)
Rewrite the expression
−4×5×30
Multiply the terms
−600
(−42)2−(−600)
Rewrite the expression
422−(−600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
422+600
Evaluate the power
1764+600
Add the numbers
2364
x=1042±2364
Simplify the radical expression
More Steps

Evaluate
2364
Write the expression as a product where the root of one of the factors can be evaluated
4×591
Write the number in exponential form with the base of 2
22×591
The root of a product is equal to the product of the roots of each factor
22×591
Reduce the index of the radical and exponent with 2
2591
x=1042±2591
Separate the equation into 2 possible cases
x=1042+2591x=1042−2591
Simplify the expression
More Steps

Evaluate
x=1042+2591
Divide the terms
More Steps

Evaluate
1042+2591
Rewrite the expression
102(21+591)
Cancel out the common factor 2
521+591
x=521+591
x=521+591x=1042−2591
Simplify the expression
More Steps

Evaluate
x=1042−2591
Divide the terms
More Steps

Evaluate
1042−2591
Rewrite the expression
102(21−591)
Cancel out the common factor 2
521−591
x=521−591
x=521+591x=521−591
Solution
x1=521−591,x2=521+591
Alternative Form
x1≈−0.662098,x2≈9.062098
Show Solution
