Question
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
(x1,y1)=(2114+291,7−7+91)(x2,y2)=(2114−291,−77+91)
Evaluate
{3x−2y=7xy7xy=4
Solve the equation for x
More Steps

Evaluate
3x−2y=7xy
Evaluate
3x−2y=7yx
Move the variable to the left side
3x−2y−7yx=0
Collect like terms by calculating the sum or difference of their coefficients
(3−7y)x−2y=0
Move the constant to the right side
(3−7y)x=0+2y
Removing 0 doesn't change the value,so remove it from the expression
(3−7y)x=2y
Divide both sides
3−7y(3−7y)x=3−7y2y
Divide the numbers
x=3−7y2y
{x=3−7y2y7xy=4
Substitute the given value of x into the equation 7xy=4
7×3−7y2y×y=4
Simplify
More Steps

Evaluate
7×3−7y2y×y
Multiply the terms
More Steps

Multiply the terms
7×3−7y2y
Multiply the terms
3−7y7×2y
Multiply the terms
3−7y14y
3−7y14y×y
Multiply the terms
3−7y14y×y
Multiply the terms
3−7y14y2
3−7y14y2=4
Cross multiply
14y2=(3−7y)×4
Simplify the equation
14y2=4(3−7y)
Rewrite the expression
2×7y2=2×2(3−7y)
Evaluate
7y2=2(3−7y)
Expand the expression
More Steps

Evaluate
2(3−7y)
Apply the distributive property
2×3−2×7y
Multiply the numbers
6−2×7y
Multiply the numbers
6−14y
7y2=6−14y
Move the expression to the left side
7y2−(6−14y)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7y2−6+14y=0
Rewrite in standard form
7y2+14y−6=0
Substitute a=7,b=14 and c=−6 into the quadratic formula y=2a−b±b2−4ac
y=2×7−14±142−4×7(−6)
Simplify the expression
y=14−14±142−4×7(−6)
Simplify the expression
More Steps

Evaluate
142−4×7(−6)
Multiply
More Steps

Multiply the terms
4×7(−6)
Rewrite the expression
−4×7×6
Multiply the terms
−168
142−(−168)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
142+168
Evaluate the power
196+168
Add the numbers
364
y=14−14±364
Simplify the radical expression
More Steps

Evaluate
364
Write the expression as a product where the root of one of the factors can be evaluated
4×91
Write the number in exponential form with the base of 2
22×91
The root of a product is equal to the product of the roots of each factor
22×91
Reduce the index of the radical and exponent with 2
291
y=14−14±291
Separate the equation into 2 possible cases
y=14−14+291y=14−14−291
Simplify the expression
More Steps

Evaluate
y=14−14+291
Divide the terms
More Steps

Evaluate
14−14+291
Rewrite the expression
142(−7+91)
Cancel out the common factor 2
7−7+91
y=7−7+91
y=7−7+91y=14−14−291
Simplify the expression
More Steps

Evaluate
y=14−14−291
Divide the terms
More Steps

Evaluate
14−14−291
Rewrite the expression
142(−7−91)
Cancel out the common factor 2
7−7−91
Use b−a=−ba=−ba to rewrite the fraction
−77+91
y=−77+91
y=7−7+91y=−77+91
Evaluate the logic
y=7−7+91∪y=−77+91
Rearrange the terms
{x=3−7y2yy=7−7+91∪{x=3−7y2yy=−77+91
Calculate
More Steps

Evaluate
{x=3−7y2yy=7−7+91
Substitute the given value of y into the equation x=3−7y2y
x=3−7×7−7+912×7−7+91
Calculate
x=2114+291
Calculate
{x=2114+291y=7−7+91
{x=2114+291y=7−7+91∪{x=3−7y2yy=−77+91
Calculate
More Steps

Evaluate
{x=3−7y2yy=−77+91
Substitute the given value of y into the equation x=3−7y2y
x=3−7(−77+91)2(−77+91)
Calculate
x=2114−291
Calculate
{x=2114−291y=−77+91
{x=2114+291y=7−7+91∪{x=2114−291y=−77+91
Check the solution
More Steps

Check the solution
{3×2114+291−2×7−7+91=7×2114+291×7−7+917×2114+291×7−7+91=4
Simplify
{4=44=4
Evaluate
true
{x=2114+291y=7−7+91∪{x=2114−291y=−77+91
Check the solution
More Steps

Check the solution
⎩⎨⎧3×2114−291−2(−77+91)=7×2114−291×(−77+91)7×2114−291×(−77+91)=4
Simplify
{4=44=4
Evaluate
true
{x=2114+291y=7−7+91∪{x=2114−291y=−77+91
Solution
(x1,y1)=(2114+291,7−7+91)(x2,y2)=(2114−291,−77+91)
Show Solution
