Question
Simplify the expression
3x−1354
Evaluate
3x−264−4
Cancel out the common factor 2
3x−132−4
Solution
More Steps

Evaluate
−132−4
Reduce fractions to a common denominator
−132−134×13
Write all numerators above the common denominator
13−2−4×13
Multiply the numbers
13−2−52
Subtract the numbers
13−54
Use b−a=−ba=−ba to rewrite the fraction
−1354
3x−1354
Show Solution

Factor the expression
133(13x−18)
Evaluate
3x−264−4
Cancel out the common factor 2
3x−132−4
Subtract the numbers
More Steps

Evaluate
−132−4
Reduce fractions to a common denominator
−132−134×13
Write all numerators above the common denominator
13−2−4×13
Multiply the numbers
13−2−52
Subtract the numbers
13−54
Use b−a=−ba=−ba to rewrite the fraction
−1354
3x−1354
Solution
133(13x−18)
Show Solution

Find the roots
x=1318
Alternative Form
x=1.3˙84615˙
Evaluate
3x−264−4
To find the roots of the expression,set the expression equal to 0
3x−264−4=0
Cancel out the common factor 2
3x−132−4=0
Subtract the numbers
More Steps

Simplify
3x−132−4
Subtract the numbers
More Steps

Evaluate
−132−4
Reduce fractions to a common denominator
−132−134×13
Write all numerators above the common denominator
13−2−4×13
Multiply the numbers
13−2−52
Subtract the numbers
13−54
Use b−a=−ba=−ba to rewrite the fraction
−1354
3x−1354
3x−1354=0
Move the constant to the right-hand side and change its sign
3x=0+1354
Add the terms
3x=1354
Multiply by the reciprocal
3x×31=1354×31
Multiply
x=1354×31
Solution
More Steps

Evaluate
1354×31
Reduce the numbers
1318×1
Multiply the numbers
1318
x=1318
Alternative Form
x=1.3˙84615˙
Show Solution
