Question
Solve the equation
Solve for x
Solve for y
x=−3∣y∣18+15y,y=0x=3∣y∣18+15y,y=0
Evaluate
3xy2x−5y=6
Multiply the terms
3x2y2−5y=6
Rewrite the expression
3y2x2−5y=6
Move the expression to the right-hand side and change its sign
3y2x2=6+5y
Divide both sides
3y23y2x2=3y26+5y
Divide the numbers
x2=3y26+5y
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±3y26+5y
Simplify the expression
More Steps

Evaluate
3y26+5y
To take a root of a fraction,take the root of the numerator and denominator separately
3y26+5y
Simplify the radical expression
More Steps

Evaluate
3y2
Rewrite the expression
3×y2
Simplify the root
3×∣y∣
3×∣y∣6+5y
Multiply by the Conjugate
3×∣y∣×36+5y×3
Calculate
3∣y∣6+5y×3
Calculate
More Steps

Evaluate
6+5y×3
The product of roots with the same index is equal to the root of the product
(6+5y)×3
Calculate the product
18+15y
3∣y∣18+15y
x=±3∣y∣18+15y
Separate the equation into 2 possible cases
x=3∣y∣18+15yx=−3∣y∣18+15y
Calculate
{x=−3∣y∣18+15yy=0{x=3∣y∣18+15yy=0
Solution
x=−3∣y∣18+15y,y=0x=3∣y∣18+15y,y=0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
3xy2x−5y=6
Multiply the terms
3x2y2−5y=6
To test if the graph of 3x2y2−5y=6 is symmetry with respect to the origin,substitute -x for x and -y for y
3(−x)2(−y)2−5(−y)=6
Evaluate
More Steps

Evaluate
3(−x)2(−y)2−5(−y)
Multiply the terms
More Steps

Multiply the terms
3(−x)2(−y)2
Multiply the terms
3x2(−y)2
Multiply the terms
3x2y2
3x2y2−5(−y)
Multiply the numbers
3x2y2−(−5y)
Rewrite the expression
3x2y2+5y
3x2y2+5y=6
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−6x2y−56xy2
Calculate
3xy2x−5y=6
Simplify the expression
3x2y2−5y=6
Take the derivative of both sides
dxd(3x2y2−5y)=dxd(6)
Calculate the derivative
More Steps

Evaluate
dxd(3x2y2−5y)
Use differentiation rules
dxd(3x2y2)+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(3x2y2)
Use differentiation rules
dxd(3x2)×y2+3x2×dxd(y2)
Evaluate the derivative
6xy2+3x2×dxd(y2)
Evaluate the derivative
6xy2+6x2ydxdy
6xy2+6x2ydxdy+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
6xy2+6x2ydxdy−5dxdy
6xy2+6x2ydxdy−5dxdy=dxd(6)
Calculate the derivative
6xy2+6x2ydxdy−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
6xy2+(6x2y−5)dxdy=0
Move the constant to the right side
(6x2y−5)dxdy=0−6xy2
Removing 0 doesn't change the value,so remove it from the expression
(6x2y−5)dxdy=−6xy2
Divide both sides
6x2y−5(6x2y−5)dxdy=6x2y−5−6xy2
Divide the numbers
dxdy=6x2y−5−6xy2
Solution
dxdy=−6x2y−56xy2
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=216x6y3−540x4y2+450x2y−125432x4y4−360x2y3−150y2
Calculate
3xy2x−5y=6
Simplify the expression
3x2y2−5y=6
Take the derivative of both sides
dxd(3x2y2−5y)=dxd(6)
Calculate the derivative
More Steps

Evaluate
dxd(3x2y2−5y)
Use differentiation rules
dxd(3x2y2)+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(3x2y2)
Use differentiation rules
dxd(3x2)×y2+3x2×dxd(y2)
Evaluate the derivative
6xy2+3x2×dxd(y2)
Evaluate the derivative
6xy2+6x2ydxdy
6xy2+6x2ydxdy+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
6xy2+6x2ydxdy−5dxdy
6xy2+6x2ydxdy−5dxdy=dxd(6)
Calculate the derivative
6xy2+6x2ydxdy−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
6xy2+(6x2y−5)dxdy=0
Move the constant to the right side
(6x2y−5)dxdy=0−6xy2
Removing 0 doesn't change the value,so remove it from the expression
(6x2y−5)dxdy=−6xy2
Divide both sides
6x2y−5(6x2y−5)dxdy=6x2y−5−6xy2
Divide the numbers
dxdy=6x2y−5−6xy2
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−6x2y−56xy2
Take the derivative of both sides
dxd(dxdy)=dxd(−6x2y−56xy2)
Calculate the derivative
dx2d2y=dxd(−6x2y−56xy2)
Use differentiation rules
dx2d2y=−(6x2y−5)2dxd(6xy2)×(6x2y−5)−6xy2×dxd(6x2y−5)
Calculate the derivative
More Steps

Evaluate
dxd(6xy2)
Use differentiation rules
dxd(6)×xy2+6×dxd(x)×y2+6x×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(6)×xy2+6y2+6x×dxd(y2)
Evaluate the derivative
dxd(6)×xy2+6y2+12xydxdy
Calculate
6y2+12xydxdy
dx2d2y=−(6x2y−5)2(6y2+12xydxdy)(6x2y−5)−6xy2×dxd(6x2y−5)
Calculate the derivative
More Steps

Evaluate
dxd(6x2y−5)
Use differentiation rules
dxd(6x2y)+dxd(−5)
Evaluate the derivative
12xy+6x2dxdy+dxd(−5)
Use dxd(c)=0 to find derivative
12xy+6x2dxdy+0
Evaluate
12xy+6x2dxdy
dx2d2y=−(6x2y−5)2(6y2+12xydxdy)(6x2y−5)−6xy2(12xy+6x2dxdy)
Calculate
More Steps

Evaluate
(6y2+12xydxdy)(6x2y−5)
Use the the distributive property to expand the expression
6y2(6x2y−5)+12xydxdy×(6x2y−5)
Multiply the terms
36y3x2−30y2+12xydxdy×(6x2y−5)
Multiply the terms
36y3x2−30y2+72x3y2dxdy−60xydxdy
dx2d2y=−(6x2y−5)236y3x2−30y2+72x3y2dxdy−60xydxdy−6xy2(12xy+6x2dxdy)
Calculate
More Steps

Evaluate
6xy2(12xy+6x2dxdy)
Apply the distributive property
6xy2×12xy+6xy2×6x2dxdy
Calculate
72x2y3+6xy2×6x2dxdy
Calculate
72x2y3+36x3y2dxdy
dx2d2y=−(6x2y−5)236y3x2−30y2+72x3y2dxdy−60xydxdy−(72x2y3+36x3y2dxdy)
Calculate
More Steps

Calculate
36y3x2−30y2+72x3y2dxdy−60xydxdy−(72x2y3+36x3y2dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36y3x2−30y2+72x3y2dxdy−60xydxdy−72x2y3−36x3y2dxdy
Subtract the terms
−36y3x2−30y2+72x3y2dxdy−60xydxdy−36x3y2dxdy
Subtract the terms
−36y3x2−30y2+36x3y2dxdy−60xydxdy
dx2d2y=−(6x2y−5)2−36y3x2−30y2+36x3y2dxdy−60xydxdy
Use equation dxdy=−6x2y−56xy2 to substitute
dx2d2y=−(6x2y−5)2−36y3x2−30y2+36x3y2(−6x2y−56xy2)−60xy(−6x2y−56xy2)
Solution
More Steps

Calculate
−(6x2y−5)2−36y3x2−30y2+36x3y2(−6x2y−56xy2)−60xy(−6x2y−56xy2)
Multiply
More Steps

Multiply the terms
36x3y2(−6x2y−56xy2)
Any expression multiplied by 1 remains the same
−36x3y2×6x2y−56xy2
Multiply the terms
−6x2y−5216x4y4
−(6x2y−5)2−36y3x2−30y2−6x2y−5216x4y4−60xy(−6x2y−56xy2)
Multiply
More Steps

Multiply the terms
−60xy(−6x2y−56xy2)
Any expression multiplied by 1 remains the same
60xy×6x2y−56xy2
Multiply the terms
6x2y−560xy×6xy2
Multiply the terms
6x2y−5360x2y3
−(6x2y−5)2−36y3x2−30y2−6x2y−5216x4y4+6x2y−5360x2y3
Calculate the sum or difference
More Steps

Evaluate
−36y3x2−30y2−6x2y−5216x4y4+6x2y−5360x2y3
Reduce fractions to a common denominator
−6x2y−536y3x2(6x2y−5)−6x2y−530y2(6x2y−5)−6x2y−5216x4y4+6x2y−5360x2y3
Write all numerators above the common denominator
6x2y−5−36y3x2(6x2y−5)−30y2(6x2y−5)−216x4y4+360x2y3
Multiply the terms
6x2y−5−(216x4y4−180y3x2)−30y2(6x2y−5)−216x4y4+360x2y3
Multiply the terms
6x2y−5−(216x4y4−180y3x2)−(180x2y3−150y2)−216x4y4+360x2y3
Calculate the sum or difference
6x2y−5−432x4y4+360x2y3+150y2
−(6x2y−5)26x2y−5−432x4y4+360x2y3+150y2
Divide the terms
More Steps

Evaluate
(6x2y−5)26x2y−5−432x4y4+360x2y3+150y2
Multiply by the reciprocal
6x2y−5−432x4y4+360x2y3+150y2×(6x2y−5)21
Multiply the terms
(6x2y−5)(6x2y−5)2−432x4y4+360x2y3+150y2
Multiply the terms
(6x2y−5)3−432x4y4+360x2y3+150y2
−(6x2y−5)3−432x4y4+360x2y3+150y2
Use b−a=−ba=−ba to rewrite the fraction
(6x2y−5)3432x4y4−360x2y3−150y2
Expand the expression
More Steps

Evaluate
(6x2y−5)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
(6x2y)3−3(6x2y)2×5+3×6x2y×52−53
Calculate
216x6y3−540x4y2+450x2y−125
216x6y3−540x4y2+450x2y−125432x4y4−360x2y3−150y2
dx2d2y=216x6y3−540x4y2+450x2y−125432x4y4−360x2y3−150y2
Show Solution
