Question
Solve the equation
Solve for x
Solve for y
x=0
Evaluate
3y6x=xy
Rewrite the expression
3y6x=yx
Add or subtract both sides
3y6x−yx=0
Collect like terms by calculating the sum or difference of their coefficients
(3y6−y)x=0
Solution
x=0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
3y6x=xy
To test if the graph of 3y6x=xy is symmetry with respect to the origin,substitute -x for x and -y for y
3(−y)6(−x)=−x(−y)
Evaluate
More Steps

Evaluate
3(−y)6(−x)
Any expression multiplied by 1 remains the same
−3(−y)6x
Multiply the terms
−3y6x
−3y6x=−x(−y)
Multiplying or dividing an even number of negative terms equals a positive
−3y6x=xy
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=53csc(θ)
Evaluate
3y6x=xy
Move the expression to the left side
3y6x−xy=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
3(sin(θ)×r)6cos(θ)×r−cos(θ)×rsin(θ)×r=0
Factor the expression
3sin6(θ)cos(θ)×r7−cos(θ)sin(θ)×r2=0
Simplify the expression
3sin6(θ)cos(θ)×r7−21sin(2θ)×r2=0
Factor the expression
r2(3sin6(θ)cos(θ)×r5−21sin(2θ))=0
When the product of factors equals 0,at least one factor is 0
r2=03sin6(θ)cos(θ)×r5−21sin(2θ)=0
Evaluate
r=03sin6(θ)cos(θ)×r5−21sin(2θ)=0
Solution
More Steps

Factor the expression
3sin6(θ)cos(θ)×r5−21sin(2θ)=0
Subtract the terms
3sin6(θ)cos(θ)×r5−21sin(2θ)−(−21sin(2θ))=0−(−21sin(2θ))
Evaluate
3sin6(θ)cos(θ)×r5=21sin(2θ)
Divide the terms
r5=6sin6(θ)cos(θ)sin(2θ)
Simplify the expression
r5=3csc5(θ)
Simplify the expression
More Steps

Evaluate
53csc5(θ)
To take a root of a fraction,take the root of the numerator and denominator separately
535csc5(θ)
Simplify the radical expression
53csc(θ)
r=53csc(θ)
r=0r=53csc(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=18xy5−xy−3y6
Calculate
3y6x=xy
Take the derivative of both sides
dxd(3y6x)=dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(3y6x)
Use differentiation rules
dxd(3x)×y6+3x×dxd(y6)
Evaluate the derivative
More Steps

Evaluate
dxd(3x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3×dxd(x)
Use dxdxn=nxn−1 to find derivative
3×1
Any expression multiplied by 1 remains the same
3
3y6+3x×dxd(y6)
Evaluate the derivative
More Steps

Evaluate
dxd(y6)
Use differentiation rules
dyd(y6)×dxdy
Use dxdxn=nxn−1 to find derivative
6y5dxdy
3y6+18xy5dxdy
3y6+18xy5dxdy=dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
y+xdxdy
3y6+18xy5dxdy=y+xdxdy
Move the expression to the left side
3y6+18xy5dxdy−xdxdy=y
Move the expression to the right side
18xy5dxdy−xdxdy=y−3y6
Collect like terms by calculating the sum or difference of their coefficients
(18xy5−x)dxdy=y−3y6
Divide both sides
18xy5−x(18xy5−x)dxdy=18xy5−xy−3y6
Solution
dxdy=18xy5−xy−3y6
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=5832y15x2−972y10x2+54y5x2−x2−12y6−324y11−2y+1134y16
Calculate
3y6x=xy
Take the derivative of both sides
dxd(3y6x)=dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(3y6x)
Use differentiation rules
dxd(3x)×y6+3x×dxd(y6)
Evaluate the derivative
More Steps

Evaluate
dxd(3x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3×dxd(x)
Use dxdxn=nxn−1 to find derivative
3×1
Any expression multiplied by 1 remains the same
3
3y6+3x×dxd(y6)
Evaluate the derivative
More Steps

Evaluate
dxd(y6)
Use differentiation rules
dyd(y6)×dxdy
Use dxdxn=nxn−1 to find derivative
6y5dxdy
3y6+18xy5dxdy
3y6+18xy5dxdy=dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
y+xdxdy
3y6+18xy5dxdy=y+xdxdy
Move the expression to the left side
3y6+18xy5dxdy−xdxdy=y
Move the expression to the right side
18xy5dxdy−xdxdy=y−3y6
Collect like terms by calculating the sum or difference of their coefficients
(18xy5−x)dxdy=y−3y6
Divide both sides
18xy5−x(18xy5−x)dxdy=18xy5−xy−3y6
Divide the numbers
dxdy=18xy5−xy−3y6
Take the derivative of both sides
dxd(dxdy)=dxd(18xy5−xy−3y6)
Calculate the derivative
dx2d2y=dxd(18xy5−xy−3y6)
Use differentiation rules
dx2d2y=(18xy5−x)2dxd(y−3y6)×(18xy5−x)−(y−3y6)×dxd(18xy5−x)
Calculate the derivative
More Steps

Evaluate
dxd(y−3y6)
Use differentiation rules
dxd(y)+dxd(−3y6)
Evaluate the derivative
dxdy+dxd(−3y6)
Evaluate the derivative
dxdy−18y5dxdy
dx2d2y=(18xy5−x)2(dxdy−18y5dxdy)(18xy5−x)−(y−3y6)×dxd(18xy5−x)
Calculate the derivative
More Steps

Evaluate
dxd(18xy5−x)
Use differentiation rules
dxd(18xy5)+dxd(−x)
Evaluate the derivative
18y5+90xy4dxdy+dxd(−x)
Evaluate the derivative
18y5+90xy4dxdy−1
dx2d2y=(18xy5−x)2(dxdy−18y5dxdy)(18xy5−x)−(y−3y6)(18y5+90xy4dxdy−1)
Calculate
More Steps

Evaluate
(dxdy−18y5dxdy)(18xy5−x)
Use the the distributive property to expand the expression
dxdy×(18xy5−x)−18y5dxdy×(18xy5−x)
Multiply the terms
18xy5dxdy−xdxdy−18y5dxdy×(18xy5−x)
Multiply the terms
18xy5dxdy−xdxdy−324y10xdxdy+18y5xdxdy
Calculate
36xy5dxdy−xdxdy−324y10xdxdy
dx2d2y=(18xy5−x)236xy5dxdy−xdxdy−324y10xdxdy−(y−3y6)(18y5+90xy4dxdy−1)
Calculate
More Steps

Evaluate
(y−3y6)(18y5+90xy4dxdy−1)
Use the the distributive property to expand the expression
(y−3y6)(18y5+90xy4dxdy)+(y−3y6)(−1)
Multiply the terms
18y6+90y5xdxdy−54y11−270y10xdxdy+(y−3y6)(−1)
Multiply the terms
18y6+90y5xdxdy−54y11−270y10xdxdy−y+3y6
Calculate
21y6+90y5xdxdy−54y11−270y10xdxdy−y
dx2d2y=(18xy5−x)236xy5dxdy−xdxdy−324y10xdxdy−(21y6+90y5xdxdy−54y11−270y10xdxdy−y)
Calculate
More Steps

Calculate
36xy5dxdy−xdxdy−324y10xdxdy−(21y6+90y5xdxdy−54y11−270y10xdxdy−y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36xy5dxdy−xdxdy−324y10xdxdy−21y6−90y5xdxdy+54y11+270y10xdxdy+y
Subtract the terms
−54xy5dxdy−xdxdy−324y10xdxdy−21y6+54y11+270y10xdxdy+y
Add the terms
−54xy5dxdy−xdxdy−54y10xdxdy−21y6+54y11+y
dx2d2y=(18xy5−x)2−54xy5dxdy−xdxdy−54y10xdxdy−21y6+54y11+y
Use equation dxdy=18xy5−xy−3y6 to substitute
dx2d2y=(18xy5−x)2−54xy5×18xy5−xy−3y6−x×18xy5−xy−3y6−54y10x×18xy5−xy−3y6−21y6+54y11+y
Solution
More Steps

Calculate
(18xy5−x)2−54xy5×18xy5−xy−3y6−x×18xy5−xy−3y6−54y10x×18xy5−xy−3y6−21y6+54y11+y
Multiply the terms
(18xy5−x)2−18y5−154y5(y−3y6)−x×18xy5−xy−3y6−54y10x×18xy5−xy−3y6−21y6+54y11+y
Multiply the terms
More Steps

Multiply the terms
−x×18xy5−xy−3y6
Rewrite the expression
−x×x(18y5−1)y−3y6
Cancel out the common factor x
−1×18y5−1y−3y6
Multiply the terms
−18y5−1y−3y6
(18xy5−x)2−18y5−154y5(y−3y6)−18y5−1y−3y6−54y10x×18xy5−xy−3y6−21y6+54y11+y
Multiply the terms
(18xy5−x)2−18y5−154y5(y−3y6)−18y5−1y−3y6−18y5−154y10(y−3y6)−21y6+54y11+y
Calculate the sum or difference
More Steps

Evaluate
−18y5−154y5(y−3y6)−18y5−1y−3y6−18y5−154y10(y−3y6)−21y6+54y11+y
Reduce fractions to a common denominator
−18y5−154y5(y−3y6)−18y5−1y−3y6−18y5−154y10(y−3y6)−18y5−121y6(18y5−1)+18y5−154y11(18y5−1)+18y5−1y(18y5−1)
Write all numerators above the common denominator
18y5−1−54y5(y−3y6)−(y−3y6)−54y10(y−3y6)−21y6(18y5−1)+54y11(18y5−1)+y(18y5−1)
Multiply the terms
18y5−1−(54y6−162y11)−(y−3y6)−54y10(y−3y6)−21y6(18y5−1)+54y11(18y5−1)+y(18y5−1)
Multiply the terms
18y5−1−(54y6−162y11)−(y−3y6)−(54y11−162y16)−21y6(18y5−1)+54y11(18y5−1)+y(18y5−1)
Multiply the terms
18y5−1−(54y6−162y11)−(y−3y6)−(54y11−162y16)−(378y11−21y6)+54y11(18y5−1)+y(18y5−1)
Multiply the terms
18y5−1−(54y6−162y11)−(y−3y6)−(54y11−162y16)−(378y11−21y6)+972y16−54y11+y(18y5−1)
Multiply the terms
18y5−1−(54y6−162y11)−(y−3y6)−(54y11−162y16)−(378y11−21y6)+972y16−54y11+18y6−y
Calculate the sum or difference
18y5−1−12y6−324y11−2y+1134y16
(18xy5−x)218y5−1−12y6−324y11−2y+1134y16
Multiply by the reciprocal
18y5−1−12y6−324y11−2y+1134y16×(18xy5−x)21
Multiply the terms
(18y5−1)(18xy5−x)2−12y6−324y11−2y+1134y16
Expand the expression
More Steps

Evaluate
(18y5−1)(18xy5−x)2
Expand the expression
(18y5−1)(324x2y10−36x2y5+x2)
Apply the distributive property
18y5×324x2y10−18y5×36x2y5+18y5x2−324x2y10−(−36x2y5)−x2
Multiply the terms
5832y15x2−18y5×36x2y5+18y5x2−324x2y10−(−36x2y5)−x2
Multiply the terms
5832y15x2−648y10x2+18y5x2−324x2y10−(−36x2y5)−x2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5832y15x2−648y10x2+18y5x2−324x2y10+36x2y5−x2
Subtract the terms
5832y15x2−972y10x2+18y5x2+36x2y5−x2
Add the terms
5832y15x2−972y10x2+54y5x2−x2
5832y15x2−972y10x2+54y5x2−x2−12y6−324y11−2y+1134y16
dx2d2y=5832y15x2−972y10x2+54y5x2−x2−12y6−324y11−2y+1134y16
Show Solution
