Question
Simplify the expression
48y3z+288y2z2+432yz3
Evaluate
3y(−2y−6z)×4z(−2y−6z)
Multiply the terms
12y(−2y−6z)z(−2y−6z)
Multiply the terms
12yz(−2y−6z)(−2y−6z)
Multiply the terms
12yz(−2y−6z)2
A negative base raised to an even power equals a positive
12yz(2y+6z)2
Expand the expression
More Steps

Evaluate
(2y+6z)2
Use (a+b)2=a2+2ab+b2 to expand the expression
(2y)2+2×2y×6z+(6z)2
Calculate
4y2+24yz+36z2
12yz(4y2+24yz+36z2)
Apply the distributive property
12yz×4y2+12yz×24yz+12yz×36z2
Multiply the terms
More Steps

Evaluate
12yz×4y2
Multiply the numbers
48yzy2
Multiply the terms
More Steps

Evaluate
y×y2
Use the product rule an×am=an+m to simplify the expression
y1+2
Add the numbers
y3
48y3z
48y3z+12yz×24yz+12yz×36z2
Multiply the terms
More Steps

Evaluate
12yz×24yz
Multiply the numbers
288yzyz
Multiply the terms
288y2z×z
Multiply the terms
288y2z2
48y3z+288y2z2+12yz×36z2
Solution
More Steps

Evaluate
12yz×36z2
Multiply the numbers
432yz×z2
Multiply the terms
More Steps

Evaluate
z×z2
Use the product rule an×am=an+m to simplify the expression
z1+2
Add the numbers
z3
432yz3
48y3z+288y2z2+432yz3
Show Solution

Factor the expression
48yz(y+3z)2
Evaluate
3y(−2y−6z)×4z(−2y−6z)
Multiply the terms
12y(−2y−6z)z(−2y−6z)
Multiply the terms
12yz(−2y−6z)(−2y−6z)
Multiply the terms
12yz(−2y−6z)2
Factor the expression
More Steps

Evaluate
(−2y−6z)2
Factor the expression
(−2(y+3z))2
Evaluate the power
4(y+3z)2
12yz×4(y+3z)2
Solution
48yz(y+3z)2
Show Solution
