Question
Find the roots
z1=615−273,z2=615+273
Alternative Form
z1≈−0.253785,z2≈5.253785
Evaluate
3z2−15z−4
To find the roots of the expression,set the expression equal to 0
3z2−15z−4=0
Substitute a=3,b=−15 and c=−4 into the quadratic formula z=2a−b±b2−4ac
z=2×315±(−15)2−4×3(−4)
Simplify the expression
z=615±(−15)2−4×3(−4)
Simplify the expression
More Steps

Evaluate
(−15)2−4×3(−4)
Multiply
More Steps

Multiply the terms
4×3(−4)
Rewrite the expression
−4×3×4
Multiply the terms
−48
(−15)2−(−48)
Rewrite the expression
152−(−48)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+48
Evaluate the power
225+48
Add the numbers
273
z=615±273
Separate the equation into 2 possible cases
z=615+273z=615−273
Solution
z1=615−273,z2=615+273
Alternative Form
z1≈−0.253785,z2≈5.253785
Show Solution
