Question
Solve the inequality
x∈/R
Alternative Form
No real solution
Evaluate
4x−22(x−1)×832(x−1)>52
Simplify
More Steps

Evaluate
4x−22(x−1)×832(x−1)
Multiply the terms
More Steps

Evaluate
32(x−1)
Apply the distributive property
32x−32×1
Any expression multiplied by 1 remains the same
32x−32
4x−22(x−1)×832x−32
Multiply the terms
More Steps

Evaluate
22(x−1)×832x−32
Rewrite the expression
22(x−1)×22x−2
Multiply the terms with the same base by adding their exponents
22(x−1)+2x−2
Calculate
24x−4
4x−24x−4
4x−24x−4>52
Move the expression to the left side
4x−24x−4−52>0
Rewrite the expression
4x−161×24x−52>0
Rewrite the expression
22x−161×24x−52>0
Solve the equation using substitution t=22x
t−161t2−52>0
Move the constant to the right side
t−161t2>0−(−52)
Add the terms
t−161t2>52
Evaluate
t2−16t<−832
Add the same value to both sides
t2−16t+64<−832+64
Evaluate
t2−16t+64<−768
Evaluate
(t−8)2<−768
Calculate
t∈/R
Solution
x∈/R
Alternative Form
No real solution
Show Solution
