Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=52−29,x2=52+29
Alternative Form
x1≈−0.677033,x2≈1.477033
Evaluate
4(−4x−5)=5(−4x2)
Multiply the numbers
More Steps

Evaluate
5(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−5×4
Multiply the numbers
−20
4(−4x−5)=−20x2
Swap the sides
−20x2=4(−4x−5)
Expand the expression
More Steps

Evaluate
4(−4x−5)
Apply the distributive property
4(−4x)−4×5
Multiply the numbers
More Steps

Evaluate
4(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4
Multiply the numbers
−16
−16x−4×5
Multiply the numbers
−16x−20
−20x2=−16x−20
Move the expression to the left side
−20x2+16x+20=0
Multiply both sides
20x2−16x−20=0
Substitute a=20,b=−16 and c=−20 into the quadratic formula x=2a−b±b2−4ac
x=2×2016±(−16)2−4×20(−20)
Simplify the expression
x=4016±(−16)2−4×20(−20)
Simplify the expression
More Steps

Evaluate
(−16)2−4×20(−20)
Multiply
More Steps

Multiply the terms
4×20(−20)
Rewrite the expression
−4×20×20
Multiply the terms
−1600
(−16)2−(−1600)
Rewrite the expression
162−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
162+1600
Evaluate the power
256+1600
Add the numbers
1856
x=4016±1856
Simplify the radical expression
More Steps

Evaluate
1856
Write the expression as a product where the root of one of the factors can be evaluated
64×29
Write the number in exponential form with the base of 8
82×29
The root of a product is equal to the product of the roots of each factor
82×29
Reduce the index of the radical and exponent with 2
829
x=4016±829
Separate the equation into 2 possible cases
x=4016+829x=4016−829
Simplify the expression
More Steps

Evaluate
x=4016+829
Divide the terms
More Steps

Evaluate
4016+829
Rewrite the expression
408(2+29)
Cancel out the common factor 8
52+29
x=52+29
x=52+29x=4016−829
Simplify the expression
More Steps

Evaluate
x=4016−829
Divide the terms
More Steps

Evaluate
4016−829
Rewrite the expression
408(2−29)
Cancel out the common factor 8
52−29
x=52−29
x=52+29x=52−29
Solution
x1=52−29,x2=52+29
Alternative Form
x1≈−0.677033,x2≈1.477033
Show Solution
