Question
Solve the equation
x=3611
Alternative Form
x=0.305˙
Evaluate
4(5−3x)=3(2−4x)×7
Multiply the terms
4(5−3x)=21(2−4x)
Calculate
More Steps

Evaluate
4(5−3x)
Apply the distributive property
4×5−4×3x
Multiply the numbers
20−4×3x
Multiply the numbers
20−12x
20−12x=21(2−4x)
Calculate
More Steps

Evaluate
21(2−4x)
Apply the distributive property
21×2−21×4x
Multiply the numbers
42−21×4x
Multiply the numbers
42−84x
20−12x=42−84x
Move the expression to the left side
20−12x−(42−84x)=0
Calculate
More Steps

Add the terms
20−12x−(42−84x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20−12x−42+84x
Subtract the numbers
−22−12x+84x
Add the terms
More Steps

Evaluate
−12x+84x
Collect like terms by calculating the sum or difference of their coefficients
(−12+84)x
Add the numbers
72x
−22+72x
−22+72x=0
Move the constant to the right-hand side and change its sign
72x=0+22
Removing 0 doesn't change the value,so remove it from the expression
72x=22
Divide both sides
7272x=7222
Divide the numbers
x=7222
Solution
x=3611
Alternative Form
x=0.305˙
Show Solution

Rewrite the equation
36x=11
Evaluate
4(5−3x)=3(2−4x)×7
Evaluate
4(5−3x)=21(2−4x)
Multiply
More Steps

Evaluate
4(5−3x)
Apply the distributive property
4×5−4×3x
Multiply the numbers
20−4×3x
Multiply the numbers
20−12x
20−12x=21(2−4x)
Multiply
More Steps

Evaluate
21(2−4x)
Apply the distributive property
21×2−21×4x
Multiply the numbers
42−21×4x
Multiply the numbers
42−84x
20−12x=42−84x
Move the variable to the left side
20+72x=42
Move the constant to the right side
72x=22
Solution
36x=11
Show Solution
