Question
Simplify the expression
314−85x
Evaluate
432−(31x(221×43))
Remove the parentheses
432−(31x×221×43)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
221
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
22×2+1
Multiply the terms
24+1
Add the terms
25
432−(31x×25×43)
Multiply the terms
More Steps

Multiply the terms
31x×25×43
Multiply the terms
More Steps

Evaluate
31×25×43
Reduce the fraction
1×25×41
Any expression multiplied by 1 remains the same
25×41
Multiply the terms
2×45
Multiply the terms
85
85x
432−85x
Solution
More Steps

Convert the expressions
432
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
34×3+2
Multiply the terms
312+2
Add the terms
314
314−85x
Show Solution

Factor the expression
241(112−15x)
Evaluate
432−(31x(221×43))
Remove the parentheses
432−(31x×221×43)
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
221
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
22×2+1
Multiply the terms
24+1
Add the terms
25
432−(31x×25×43)
Multiply the numbers
More Steps

Evaluate
25×43
To multiply the fractions,multiply the numerators and denominators separately
2×45×3
Multiply the numbers
2×415
Multiply the numbers
815
432−(31x×815)
Multiply the terms
More Steps

Multiply the terms
31x×815
Multiply the terms
More Steps

Evaluate
31×815
Reduce the numbers
1×85
Multiply the numbers
85
85x
432−85x
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
432
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
34×3+2
Multiply the terms
312+2
Add the terms
314
314−85x
Solution
241(112−15x)
Show Solution

Find the roots
x=15112
Alternative Form
x=7.46˙
Evaluate
432−(31x(221×43))
To find the roots of the expression,set the expression equal to 0
432−(31x(221×43))=0
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
221
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
22×2+1
Multiply the terms
24+1
Add the terms
25
432−(31x(25×43))=0
Multiply the numbers
More Steps

Evaluate
25×43
To multiply the fractions,multiply the numerators and denominators separately
2×45×3
Multiply the numbers
2×415
Multiply the numbers
815
432−(31x×815)=0
Multiply the terms
More Steps

Multiply the terms
31x×815
Multiply the terms
More Steps

Evaluate
31×815
Reduce the numbers
1×85
Multiply the numbers
85
85x
432−85x=0
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
432
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
34×3+2
Multiply the terms
312+2
Add the terms
314
314−85x=0
Move the constant to the right-hand side and change its sign
−85x=0−314
Removing 0 doesn't change the value,so remove it from the expression
−85x=−314
Change the signs on both sides of the equation
85x=314
Multiply by the reciprocal
85x×58=314×58
Multiply
x=314×58
Solution
More Steps

Evaluate
314×58
To multiply the fractions,multiply the numerators and denominators separately
3×514×8
Multiply the numbers
3×5112
Multiply the numbers
15112
x=15112
Alternative Form
x=7.46˙
Show Solution
