Question
Solve the equation
x=⎩⎨⎧2arcsin(43)+kπ2−arcsin(43)+π+kπ,k∈Z
Alternative Form
x≈{24.295189∘+180∘k65.704811∘+180∘k,k∈Z
Alternative Form
x≈{0.424031+kπ1.146765+kπ,k∈Z
Evaluate
4sin(2x)=3
Multiply both sides of the equation by 41
4sin(2x)×41=3×41
Calculate
sin(2x)=3×41
Multiply the numbers
sin(2x)=43
Use the inverse trigonometric function
2x=arcsin(43)
Calculate
2x=arcsin(43)2x=−arcsin(43)+π
Add the period of 2kπ,k∈Z to find all solutions
2x=arcsin(43)+2kπ,k∈Z2x=−arcsin(43)+π+2kπ,k∈Z
Calculate
More Steps

Evaluate
2x=arcsin(43)+2kπ
Divide both sides
22x=2arcsin(43)+2kπ
Divide the numbers
x=2arcsin(43)+2kπ
Divide the numbers
x=2arcsin(43)+kπ
x=2arcsin(43)+kπ,k∈Z2x=−arcsin(43)+π+2kπ,k∈Z
Calculate
More Steps

Evaluate
2x=−arcsin(43)+π+2kπ
Divide both sides
22x=2−arcsin(43)+π+2kπ
Divide the numbers
x=2−arcsin(43)+π+2kπ
Divide the numbers
x=2−arcsin(43)+π+kπ
x=2arcsin(43)+kπ,k∈Zx=2−arcsin(43)+π+kπ,k∈Z
Solution
x=⎩⎨⎧2arcsin(43)+kπ2−arcsin(43)+π+kπ,k∈Z
Alternative Form
x≈{24.295189∘+180∘k65.704811∘+180∘k,k∈Z
Alternative Form
x≈{0.424031+kπ1.146765+kπ,k∈Z
Show Solution
