Question
Simplify the expression
12x−12x3
Evaluate
4x(3−3x2)
Apply the distributive property
4x×3−4x×3x2
Multiply the numbers
12x−4x×3x2
Solution
More Steps

Evaluate
4x×3x2
Multiply the numbers
12x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
12x3
12x−12x3
Show Solution

Factor the expression
12x(1−x)(1+x)
Evaluate
4x(3−3x2)
Use a2−b2=(a−b)(a+b) to factor the expression
4x×3(1−x)(1+x)
Solution
12x(1−x)(1+x)
Show Solution

Find the roots
x1=−1,x2=0,x3=1
Evaluate
4x(3−3x2)
To find the roots of the expression,set the expression equal to 0
4x(3−3x2)=0
Elimination the left coefficient
x(3−3x2)=0
Separate the equation into 2 possible cases
x=03−3x2=0
Solve the equation
More Steps

Evaluate
3−3x2=0
Move the constant to the right-hand side and change its sign
−3x2=0−3
Removing 0 doesn't change the value,so remove it from the expression
−3x2=−3
Change the signs on both sides of the equation
3x2=3
Divide both sides
33x2=33
Divide the numbers
x2=33
Divide the numbers
More Steps

Evaluate
33
Reduce the numbers
11
Calculate
1
x2=1
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±1
Simplify the expression
x=±1
Separate the equation into 2 possible cases
x=1x=−1
x=0x=1x=−1
Solution
x1=−1,x2=0,x3=1
Show Solution
