Question
Solve the equation(The real numbers system)
k∈/R
Alternative Form
No real solution
Evaluate
54k=−2k×21×103k−2
Multiply
More Steps

Evaluate
−2k×21×103k
Multiply the terms
More Steps

Evaluate
2×21×103
Reduce the fraction
1×1×103
Any expression multiplied by 1 remains the same
1×103
Any expression multiplied by 1 remains the same
103
−103k×k
Multiply the terms
−103k2
54k=−103k2−2
Swap the sides
−103k2−2=54k
Move the expression to the left side
−103k2−2−54k=0
Rewrite in standard form
−103k2−54k−2=0
Multiply both sides
103k2+54k+2=0
Multiply both sides
10(103k2+54k+2)=10×0
Calculate
3k2+8k+20=0
Substitute a=3,b=8 and c=20 into the quadratic formula k=2a−b±b2−4ac
k=2×3−8±82−4×3×20
Simplify the expression
k=6−8±82−4×3×20
Simplify the expression
More Steps

Evaluate
82−4×3×20
Multiply the terms
More Steps

Multiply the terms
4×3×20
Multiply the terms
12×20
Multiply the numbers
240
82−240
Evaluate the power
64−240
Subtract the numbers
−176
k=6−8±−176
Solution
k∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
k1=−34−3211i,k2=−34+3211i
Alternative Form
k1≈−1.3˙−2.211083i,k2≈−1.3˙+2.211083i
Evaluate
54k=−2k×21×103k−2
Multiply
More Steps

Evaluate
−2k×21×103k
Multiply the terms
More Steps

Evaluate
2×21×103
Reduce the fraction
1×1×103
Any expression multiplied by 1 remains the same
1×103
Any expression multiplied by 1 remains the same
103
−103k×k
Multiply the terms
−103k2
54k=−103k2−2
Swap the sides
−103k2−2=54k
Move the expression to the left side
−103k2−2−54k=0
Rewrite in standard form
−103k2−54k−2=0
Multiply both sides
103k2+54k+2=0
Multiply both sides
10(103k2+54k+2)=10×0
Calculate
3k2+8k+20=0
Substitute a=3,b=8 and c=20 into the quadratic formula k=2a−b±b2−4ac
k=2×3−8±82−4×3×20
Simplify the expression
k=6−8±82−4×3×20
Simplify the expression
More Steps

Evaluate
82−4×3×20
Multiply the terms
More Steps

Multiply the terms
4×3×20
Multiply the terms
12×20
Multiply the numbers
240
82−240
Evaluate the power
64−240
Subtract the numbers
−176
k=6−8±−176
Simplify the radical expression
More Steps

Evaluate
−176
Evaluate the power
176×−1
Evaluate the power
176×i
Evaluate the power
More Steps

Evaluate
176
Write the expression as a product where the root of one of the factors can be evaluated
16×11
Write the number in exponential form with the base of 4
42×11
The root of a product is equal to the product of the roots of each factor
42×11
Reduce the index of the radical and exponent with 2
411
411×i
k=6−8±411×i
Separate the equation into 2 possible cases
k=6−8+411×ik=6−8−411×i
Simplify the expression
More Steps

Evaluate
k=6−8+411×i
Divide the terms
More Steps

Evaluate
6−8+411×i
Rewrite the expression
62(−4+211×i)
Cancel out the common factor 2
3−4+211×i
Use b−a=−ba=−ba to rewrite the fraction
−34−211×i
Simplify
−34+3211i
k=−34+3211i
k=−34+3211ik=6−8−411×i
Simplify the expression
More Steps

Evaluate
k=6−8−411×i
Divide the terms
More Steps

Evaluate
6−8−411×i
Rewrite the expression
62(−4−211×i)
Cancel out the common factor 2
3−4−211×i
Use b−a=−ba=−ba to rewrite the fraction
−34+211×i
Simplify
−34−3211i
k=−34−3211i
k=−34+3211ik=−34−3211i
Solution
k1=−34−3211i,k2=−34+3211i
Alternative Form
k1≈−1.3˙−2.211083i,k2≈−1.3˙+2.211083i
Show Solution
