Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=−23+17,a2=2−3+17
Alternative Form
a1≈−3.561553,a2≈0.561553
Evaluate
4×2a2=8(2−3a)
Multiply the numbers
8a2=8(2−3a)
Expand the expression
More Steps

Evaluate
8(2−3a)
Apply the distributive property
8×2−8×3a
Multiply the numbers
16−8×3a
Multiply the numbers
16−24a
8a2=16−24a
Move the expression to the left side
8a2−16+24a=0
Rewrite in standard form
8a2+24a−16=0
Substitute a=8,b=24 and c=−16 into the quadratic formula a=2a−b±b2−4ac
a=2×8−24±242−4×8(−16)
Simplify the expression
a=16−24±242−4×8(−16)
Simplify the expression
More Steps

Evaluate
242−4×8(−16)
Multiply
More Steps

Multiply the terms
4×8(−16)
Rewrite the expression
−4×8×16
Multiply the terms
−512
242−(−512)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242+512
Evaluate the power
576+512
Add the numbers
1088
a=16−24±1088
Simplify the radical expression
More Steps

Evaluate
1088
Write the expression as a product where the root of one of the factors can be evaluated
64×17
Write the number in exponential form with the base of 8
82×17
The root of a product is equal to the product of the roots of each factor
82×17
Reduce the index of the radical and exponent with 2
817
a=16−24±817
Separate the equation into 2 possible cases
a=16−24+817a=16−24−817
Simplify the expression
More Steps

Evaluate
a=16−24+817
Divide the terms
More Steps

Evaluate
16−24+817
Rewrite the expression
168(−3+17)
Cancel out the common factor 8
2−3+17
a=2−3+17
a=2−3+17a=16−24−817
Simplify the expression
More Steps

Evaluate
a=16−24−817
Divide the terms
More Steps

Evaluate
16−24−817
Rewrite the expression
168(−3−17)
Cancel out the common factor 8
2−3−17
Use b−a=−ba=−ba to rewrite the fraction
−23+17
a=−23+17
a=2−3+17a=−23+17
Solution
a1=−23+17,a2=2−3+17
Alternative Form
a1≈−3.561553,a2≈0.561553
Show Solution
