Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
y1=235−1178,y2=235+1178
Alternative Form
y1≈0.338998,y2≈34.661002
Evaluate
4(35−y)×2y=94
Multiply
More Steps

Evaluate
4(35−y)×2y
Multiply the terms
8(35−y)y
Multiply the terms
8y(35−y)
8y(35−y)=94
Expand the expression
More Steps

Evaluate
8y(35−y)
Apply the distributive property
8y×35−8y×y
Multiply the numbers
280y−8y×y
Multiply the terms
280y−8y2
280y−8y2=94
Move the expression to the left side
280y−8y2−94=0
Rewrite in standard form
−8y2+280y−94=0
Multiply both sides
8y2−280y+94=0
Substitute a=8,b=−280 and c=94 into the quadratic formula y=2a−b±b2−4ac
y=2×8280±(−280)2−4×8×94
Simplify the expression
y=16280±(−280)2−4×8×94
Simplify the expression
More Steps

Evaluate
(−280)2−4×8×94
Multiply the terms
More Steps

Multiply the terms
4×8×94
Multiply the terms
32×94
Multiply the numbers
3008
(−280)2−3008
Calculate
2802−3008
y=16280±2802−3008
Simplify the radical expression
More Steps

Evaluate
2802−3008
Add the numbers
75392
Write the expression as a product where the root of one of the factors can be evaluated
64×1178
Write the number in exponential form with the base of 8
82×1178
The root of a product is equal to the product of the roots of each factor
82×1178
Reduce the index of the radical and exponent with 2
81178
y=16280±81178
Separate the equation into 2 possible cases
y=16280+81178y=16280−81178
Simplify the expression
More Steps

Evaluate
y=16280+81178
Divide the terms
More Steps

Evaluate
16280+81178
Rewrite the expression
168(35+1178)
Cancel out the common factor 8
235+1178
y=235+1178
y=235+1178y=16280−81178
Simplify the expression
More Steps

Evaluate
y=16280−81178
Divide the terms
More Steps

Evaluate
16280−81178
Rewrite the expression
168(35−1178)
Cancel out the common factor 8
235−1178
y=235−1178
y=235+1178y=235−1178
Solution
y1=235−1178,y2=235+1178
Alternative Form
y1≈0.338998,y2≈34.661002
Show Solution
