Question
Simplify the expression
−2
Evaluate
4(3x−5)−6(2x−3)
Expand the expression
More Steps

Calculate
4(3x−5)
Apply the distributive property
4×3x−4×5
Multiply the numbers
12x−4×5
Multiply the numbers
12x−20
12x−20−6(2x−3)
Expand the expression
More Steps

Calculate
−6(2x−3)
Apply the distributive property
−6×2x−(−6×3)
Multiply the numbers
−12x−(−6×3)
Multiply the numbers
−12x−(−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−12x+18
12x−20−12x+18
The sum of two opposites equals 0
More Steps

Evaluate
12x−12x
Collect like terms
(12−12)x
Add the coefficients
0×x
Calculate
0
0−20+18
Remove 0
−20+18
Solution
−2
Show Solution

Find the roots
x∈∅
Evaluate
4(3x−5)−6(2x−3)
To find the roots of the expression,set the expression equal to 0
4(3x−5)−6(2x−3)=0
Subtract the terms
More Steps

Simplify
4(3x−5)−6(2x−3)
Rewrite the expression
2(3x−5)×2−3(2x−3)×2
Factor the expression
(2(3x−5)−3(2x−3))×2
Subtract the terms
More Steps

Evaluate
2(3x−5)−3(2x−3)
Calculate
6x−10−3(2x−3)
Calculate
6x−10−6x+9
The sum of two opposites equals 0
0−10+9
Remove 0
−10+9
Add the numbers
−1
−2
−2=0
Solution
x∈∅
Show Solution
