Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=215−315,x2=215+315
Alternative Form
x1≈1.690525,x2≈13.309475
Evaluate
4×5x2=10(2x−3)×15
Multiply the numbers
20x2=10(2x−3)×15
Multiply the terms
20x2=150(2x−3)
Expand the expression
More Steps

Evaluate
150(2x−3)
Apply the distributive property
150×2x−150×3
Multiply the numbers
300x−150×3
Multiply the numbers
300x−450
20x2=300x−450
Move the expression to the left side
20x2−300x+450=0
Substitute a=20,b=−300 and c=450 into the quadratic formula x=2a−b±b2−4ac
x=2×20300±(−300)2−4×20×450
Simplify the expression
x=40300±(−300)2−4×20×450
Simplify the expression
More Steps

Evaluate
(−300)2−4×20×450
Multiply the terms
More Steps

Multiply the terms
4×20×450
Multiply the terms
80×450
Multiply the numbers
36000
(−300)2−36000
Calculate
3002−36000
x=40300±3002−36000
Simplify the radical expression
More Steps

Evaluate
3002−36000
Expand the expression
54000
Write the expression as a product where the root of one of the factors can be evaluated
3600×15
Write the number in exponential form with the base of 60
602×15
The root of a product is equal to the product of the roots of each factor
602×15
Reduce the index of the radical and exponent with 2
6015
x=40300±6015
Separate the equation into 2 possible cases
x=40300+6015x=40300−6015
Simplify the expression
More Steps

Evaluate
x=40300+6015
Divide the terms
More Steps

Evaluate
40300+6015
Rewrite the expression
4020(15+315)
Cancel out the common factor 20
215+315
x=215+315
x=215+315x=40300−6015
Simplify the expression
More Steps

Evaluate
x=40300−6015
Divide the terms
More Steps

Evaluate
40300−6015
Rewrite the expression
4020(15−315)
Cancel out the common factor 20
215−315
x=215−315
x=215+315x=215−315
Solution
x1=215−315,x2=215+315
Alternative Form
x1≈1.690525,x2≈13.309475
Show Solution
