Question
Simplify the expression
33a−12
Evaluate
4(7a−3)+5a
Expand the expression
More Steps

Calculate
4(7a−3)
Apply the distributive property
4×7a−4×3
Multiply the numbers
28a−4×3
Multiply the numbers
28a−12
28a−12+5a
Solution
More Steps

Evaluate
28a+5a
Collect like terms by calculating the sum or difference of their coefficients
(28+5)a
Add the numbers
33a
33a−12
Show Solution

Factor the expression
3(11a−4)
Evaluate
4(7a−3)+5a
Simplify
More Steps

Evaluate
4(7a−3)
Apply the distributive property
4×7a+4(−3)
Multiply the terms
28a+4(−3)
Multiply the terms
More Steps

Evaluate
4(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−4×3
Multiply the numbers
−12
28a−12
28a−12+5a
Add the terms
More Steps

Evaluate
28a+5a
Collect like terms by calculating the sum or difference of their coefficients
(28+5)a
Add the numbers
33a
33a−12
Solution
3(11a−4)
Show Solution

Find the roots
a=114
Alternative Form
a=0.3˙6˙
Evaluate
4(7a−3)+5a
To find the roots of the expression,set the expression equal to 0
4(7a−3)+5a=0
Calculate
More Steps

Evaluate
4(7a−3)+5a
Expand the expression
More Steps

Calculate
4(7a−3)
Apply the distributive property
4×7a−4×3
Multiply the numbers
28a−4×3
Multiply the numbers
28a−12
28a−12+5a
Add the terms
More Steps

Evaluate
28a+5a
Collect like terms by calculating the sum or difference of their coefficients
(28+5)a
Add the numbers
33a
33a−12
33a−12=0
Move the constant to the right-hand side and change its sign
33a=0+12
Removing 0 doesn't change the value,so remove it from the expression
33a=12
Divide both sides
3333a=3312
Divide the numbers
a=3312
Solution
a=114
Alternative Form
a=0.3˙6˙
Show Solution
