Question
Solve the equation(The real numbers system)
v∈/R
Alternative Form
No real solution
Evaluate
4(v−1)v=3(v−2)×2
Multiply the terms
4v(v−1)=3(v−2)×2
Multiply the terms
4v(v−1)=6(v−2)
Expand the expression
More Steps

Evaluate
4v(v−1)
Apply the distributive property
4v×v−4v×1
Multiply the terms
4v2−4v×1
Any expression multiplied by 1 remains the same
4v2−4v
4v2−4v=6(v−2)
Expand the expression
More Steps

Evaluate
6(v−2)
Apply the distributive property
6v−6×2
Multiply the numbers
6v−12
4v2−4v=6v−12
Move the expression to the left side
4v2−10v+12=0
Substitute a=4,b=−10 and c=12 into the quadratic formula v=2a−b±b2−4ac
v=2×410±(−10)2−4×4×12
Simplify the expression
v=810±(−10)2−4×4×12
Simplify the expression
More Steps

Evaluate
(−10)2−4×4×12
Multiply the terms
More Steps

Multiply the terms
4×4×12
Multiply the terms
16×12
Multiply the numbers
192
(−10)2−192
Rewrite the expression
102−192
Evaluate the power
100−192
Subtract the numbers
−92
v=810±−92
Solution
v∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
v1=45−423i,v2=45+423i
Alternative Form
v1≈1.25−1.198958i,v2≈1.25+1.198958i
Evaluate
4(v−1)v=3(v−2)×2
Multiply the terms
4v(v−1)=3(v−2)×2
Multiply the terms
4v(v−1)=6(v−2)
Expand the expression
More Steps

Evaluate
4v(v−1)
Apply the distributive property
4v×v−4v×1
Multiply the terms
4v2−4v×1
Any expression multiplied by 1 remains the same
4v2−4v
4v2−4v=6(v−2)
Expand the expression
More Steps

Evaluate
6(v−2)
Apply the distributive property
6v−6×2
Multiply the numbers
6v−12
4v2−4v=6v−12
Move the expression to the left side
4v2−10v+12=0
Substitute a=4,b=−10 and c=12 into the quadratic formula v=2a−b±b2−4ac
v=2×410±(−10)2−4×4×12
Simplify the expression
v=810±(−10)2−4×4×12
Simplify the expression
More Steps

Evaluate
(−10)2−4×4×12
Multiply the terms
More Steps

Multiply the terms
4×4×12
Multiply the terms
16×12
Multiply the numbers
192
(−10)2−192
Rewrite the expression
102−192
Evaluate the power
100−192
Subtract the numbers
−92
v=810±−92
Simplify the radical expression
More Steps

Evaluate
−92
Evaluate the power
92×−1
Evaluate the power
92×i
Evaluate the power
More Steps

Evaluate
92
Write the expression as a product where the root of one of the factors can be evaluated
4×23
Write the number in exponential form with the base of 2
22×23
The root of a product is equal to the product of the roots of each factor
22×23
Reduce the index of the radical and exponent with 2
223
223×i
v=810±223×i
Separate the equation into 2 possible cases
v=810+223×iv=810−223×i
Simplify the expression
More Steps

Evaluate
v=810+223×i
Divide the terms
More Steps

Evaluate
810+223×i
Rewrite the expression
82(5+23×i)
Cancel out the common factor 2
45+23×i
Simplify
45+423i
v=45+423i
v=45+423iv=810−223×i
Simplify the expression
More Steps

Evaluate
v=810−223×i
Divide the terms
More Steps

Evaluate
810−223×i
Rewrite the expression
82(5−23×i)
Cancel out the common factor 2
45−23×i
Simplify
45−423i
v=45−423i
v=45+423iv=45−423i
Solution
v1=45−423i,v2=45+423i
Alternative Form
v1≈1.25−1.198958i,v2≈1.25+1.198958i
Show Solution
