Question
Simplify the expression
216x2y2ab−216x2y2a2−48x2y2b2
Evaluate
4xy(3a−b)×6xy(2b−3a)
Multiply the terms
24xy(3a−b)xy(2b−3a)
Multiply the terms
24x2y(3a−b)y(2b−3a)
Multiply the terms
24x2y2(3a−b)(2b−3a)
Multiply the terms
More Steps

Evaluate
24x2y2(3a−b)
Apply the distributive property
24x2y2×3a−24x2y2b
Multiply the numbers
72x2y2a−24x2y2b
(72x2y2a−24x2y2b)(2b−3a)
Apply the distributive property
72x2y2a×2b−72x2y2a×3a−24x2y2b×2b−(−24x2y2b×3a)
Multiply the numbers
144x2y2ab−72x2y2a×3a−24x2y2b×2b−(−24x2y2b×3a)
Multiply the terms
More Steps

Evaluate
72x2y2a×3a
Multiply the numbers
216x2y2a×a
Multiply the terms
216x2y2a2
144x2y2ab−216x2y2a2−24x2y2b×2b−(−24x2y2b×3a)
Multiply the terms
More Steps

Evaluate
−24x2y2b×2b
Multiply the numbers
−48x2y2b×b
Multiply the terms
−48x2y2b2
144x2y2ab−216x2y2a2−48x2y2b2−(−24x2y2b×3a)
Multiply the numbers
144x2y2ab−216x2y2a2−48x2y2b2−(−72x2y2ba)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
144x2y2ab−216x2y2a2−48x2y2b2+72x2y2ba
Solution
More Steps

Evaluate
144x2y2ab+72x2y2ba
Rewrite the expression
144x2y2ab+72x2y2ab
Collect like terms by calculating the sum or difference of their coefficients
(144+72)x2y2ab
Add the numbers
216x2y2ab
216x2y2ab−216x2y2a2−48x2y2b2
Show Solution
