Question
Simplify the expression
24x11−5248x10+387072x9−9953280x8+64×723x7
Evaluate
4(x3−8x2×9)3(6x2−16x)
Multiply the terms
4(x3−72x2)3(6x2−16x)
Expand the expression
More Steps

Evaluate
(x3−72x2)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
(x3)3−3(x3)2×72x2+3x3(72x2)2−(72x2)3
Calculate
x9−216x8+15552x7−723x6
4(x9−216x8+15552x7−723x6)(6x2−16x)
Multiply the terms
More Steps

Evaluate
4(x9−216x8+15552x7−723x6)
Apply the distributive property
4x9−4×216x8+4×15552x7−4×723x6
Multiply the numbers
4x9−864x8+4×15552x7−4×723x6
Multiply the numbers
4x9−864x8+62208x7−4×723x6
(4x9−864x8+62208x7−4×723x6)(6x2−16x)
Apply the distributive property
4x9×6x2−4x9×16x−864x8×6x2−(−864x8×16x)+62208x7×6x2−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
4x9×6x2
Multiply the numbers
24x9×x2
Multiply the terms
More Steps

Evaluate
x9×x2
Use the product rule an×am=an+m to simplify the expression
x9+2
Add the numbers
x11
24x11
24x11−4x9×16x−864x8×6x2−(−864x8×16x)+62208x7×6x2−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
4x9×16x
Multiply the numbers
64x9×x
Multiply the terms
More Steps

Evaluate
x9×x
Use the product rule an×am=an+m to simplify the expression
x9+1
Add the numbers
x10
64x10
24x11−64x10−864x8×6x2−(−864x8×16x)+62208x7×6x2−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
−864x8×6x2
Multiply the numbers
−5184x8×x2
Multiply the terms
More Steps

Evaluate
x8×x2
Use the product rule an×am=an+m to simplify the expression
x8+2
Add the numbers
x10
−5184x10
24x11−64x10−5184x10−(−864x8×16x)+62208x7×6x2−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
−864x8×16x
Multiply the numbers
−13824x8×x
Multiply the terms
More Steps

Evaluate
x8×x
Use the product rule an×am=an+m to simplify the expression
x8+1
Add the numbers
x9
−13824x9
24x11−64x10−5184x10−(−13824x9)+62208x7×6x2−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
62208x7×6x2
Multiply the numbers
373248x7×x2
Multiply the terms
More Steps

Evaluate
x7×x2
Use the product rule an×am=an+m to simplify the expression
x7+2
Add the numbers
x9
373248x9
24x11−64x10−5184x10−(−13824x9)+373248x9−62208x7×16x−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
62208x7×16x
Multiply the numbers
995328x7×x
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
995328x8
24x11−64x10−5184x10−(−13824x9)+373248x9−995328x8−4×723x6×6x2−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
−4×723x6×6x2
Multiply the numbers
−24×723x6×x2
Multiply the terms
More Steps

Evaluate
x6×x2
Use the product rule an×am=an+m to simplify the expression
x6+2
Add the numbers
x8
−24×723x8
24x11−64x10−5184x10−(−13824x9)+373248x9−995328x8−24×723x8−(−4×723x6×16x)
Multiply the terms
More Steps

Evaluate
−4×723x6×16x
Multiply the numbers
−64×723x6×x
Multiply the terms
More Steps

Evaluate
x6×x
Use the product rule an×am=an+m to simplify the expression
x6+1
Add the numbers
x7
−64×723x7
24x11−64x10−5184x10−(−13824x9)+373248x9−995328x8−24×723x8−(−64×723x7)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
24x11−64x10−5184x10+13824x9+373248x9−995328x8−24×723x8+64×723x7
Subtract the terms
More Steps

Evaluate
−64x10−5184x10
Collect like terms by calculating the sum or difference of their coefficients
(−64−5184)x10
Subtract the numbers
−5248x10
24x11−5248x10+13824x9+373248x9−995328x8−24×723x8+64×723x7
Add the terms
More Steps

Evaluate
13824x9+373248x9
Collect like terms by calculating the sum or difference of their coefficients
(13824+373248)x9
Add the numbers
387072x9
24x11−5248x10+387072x9−995328x8−24×723x8+64×723x7
Solution
More Steps

Evaluate
−995328x8−24×723x8
Collect like terms by calculating the sum or difference of their coefficients
(−995328−24×723)x8
Subtract the numbers
More Steps

Evaluate
−995328−24×723
Rewrite the expression
−995328−9×995328
Factor the expression
(−1−9)×995328
Subtract the terms
−10×995328
Multiply the numbers
−9953280
−9953280x8
24x11−5248x10+387072x9−9953280x8+64×723x7
Show Solution

Factor the expression
8x7(x−72)3(3x−8)
Evaluate
4(x3−8x2×9)3(6x2−16x)
Multiply the terms
4(x3−72x2)3(6x2−16x)
Factor the expression
More Steps

Evaluate
(x3−72x2)3
Factor the expression
More Steps

Evaluate
x3−72x2
Rewrite the expression
x2×x−x2×72
Factor out x2 from the expression
x2(x−72)
(x2(x−72))3
Evaluate the power
x6(x−72)3
4x6(x−72)3(6x2−16x)
Factor the expression
More Steps

Evaluate
6x2−16x
Rewrite the expression
2x×3x−2x×8
Factor out 2x from the expression
2x(3x−8)
4x6(x−72)3×2x(3x−8)
Solution
8x7(x−72)3(3x−8)
Show Solution

Find the roots
x1=0,x2=38,x3=72
Alternative Form
x1=0,x2=2.6˙,x3=72
Evaluate
4(x3−8x2×9)3(6x2−16x)
To find the roots of the expression,set the expression equal to 0
4(x3−8x2×9)3(6x2−16x)=0
Multiply the terms
4(x3−72x2)3(6x2−16x)=0
Elimination the left coefficient
(x3−72x2)3(6x2−16x)=0
Separate the equation into 2 possible cases
(x3−72x2)3=06x2−16x=0
Solve the equation
More Steps

Evaluate
(x3−72x2)3=0
The only way a power can be 0 is when the base equals 0
x3−72x2=0
Factor the expression
x2(x−72)=0
Separate the equation into 2 possible cases
x2=0x−72=0
The only way a power can be 0 is when the base equals 0
x=0x−72=0
Solve the equation
More Steps

Evaluate
x−72=0
Move the constant to the right-hand side and change its sign
x=0+72
Removing 0 doesn't change the value,so remove it from the expression
x=72
x=0x=72
x=0x=726x2−16x=0
Solve the equation
More Steps

Evaluate
6x2−16x=0
Factor the expression
More Steps

Evaluate
6x2−16x
Rewrite the expression
2x×3x−2x×8
Factor out 2x from the expression
2x(3x−8)
2x(3x−8)=0
When the product of factors equals 0,at least one factor is 0
2x=03x−8=0
Solve the equation for x
x=03x−8=0
Solve the equation for x
More Steps

Evaluate
3x−8=0
Move the constant to the right-hand side and change its sign
3x=0+8
Removing 0 doesn't change the value,so remove it from the expression
3x=8
Divide both sides
33x=38
Divide the numbers
x=38
x=0x=38
x=0x=72x=0x=38
Find the union
x=0x=72x=38
Solution
x1=0,x2=38,x3=72
Alternative Form
x1=0,x2=2.6˙,x3=72
Show Solution
