Question
Simplify the expression
24x7−72x6
Evaluate
4x6×3(2x−6)
Multiply the terms
12x6(2x−6)
Apply the distributive property
12x6×2x−12x6×6
Multiply the terms
More Steps

Evaluate
12x6×2x
Multiply the numbers
24x6×x
Multiply the terms
More Steps

Evaluate
x6×x
Use the product rule an×am=an+m to simplify the expression
x6+1
Add the numbers
x7
24x7
24x7−12x6×6
Solution
24x7−72x6
Show Solution

Factor the expression
24x6(x−3)
Evaluate
4x6×3(2x−6)
Multiply the terms
12x6(2x−6)
Factor the expression
12x6×2(x−3)
Solution
24x6(x−3)
Show Solution

Find the roots
x1=0,x2=3
Evaluate
4(x6)×3(2x−6)
To find the roots of the expression,set the expression equal to 0
4(x6)×3(2x−6)=0
Calculate
4x6×3(2x−6)=0
Multiply the terms
12x6(2x−6)=0
Elimination the left coefficient
x6(2x−6)=0
Separate the equation into 2 possible cases
x6=02x−6=0
The only way a power can be 0 is when the base equals 0
x=02x−6=0
Solve the equation
More Steps

Evaluate
2x−6=0
Move the constant to the right-hand side and change its sign
2x=0+6
Removing 0 doesn't change the value,so remove it from the expression
2x=6
Divide both sides
22x=26
Divide the numbers
x=26
Divide the numbers
More Steps

Evaluate
26
Reduce the numbers
13
Calculate
3
x=3
x=0x=3
Solution
x1=0,x2=3
Show Solution
