Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=106−2201,x2=106+2201
Alternative Form
x1≈−4.091482,x2≈5.291482
Evaluate
40x2−48x=866
Move the expression to the left side
40x2−48x−866=0
Substitute a=40,b=−48 and c=−866 into the quadratic formula x=2a−b±b2−4ac
x=2×4048±(−48)2−4×40(−866)
Simplify the expression
x=8048±(−48)2−4×40(−866)
Simplify the expression
More Steps

Evaluate
(−48)2−4×40(−866)
Multiply
More Steps

Multiply the terms
4×40(−866)
Rewrite the expression
−4×40×866
Multiply the terms
−138560
(−48)2−(−138560)
Rewrite the expression
482−(−138560)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
482+138560
Evaluate the power
2304+138560
Add the numbers
140864
x=8048±140864
Simplify the radical expression
More Steps

Evaluate
140864
Write the expression as a product where the root of one of the factors can be evaluated
64×2201
Write the number in exponential form with the base of 8
82×2201
The root of a product is equal to the product of the roots of each factor
82×2201
Reduce the index of the radical and exponent with 2
82201
x=8048±82201
Separate the equation into 2 possible cases
x=8048+82201x=8048−82201
Simplify the expression
More Steps

Evaluate
x=8048+82201
Divide the terms
More Steps

Evaluate
8048+82201
Rewrite the expression
808(6+2201)
Cancel out the common factor 8
106+2201
x=106+2201
x=106+2201x=8048−82201
Simplify the expression
More Steps

Evaluate
x=8048−82201
Divide the terms
More Steps

Evaluate
8048−82201
Rewrite the expression
808(6−2201)
Cancel out the common factor 8
106−2201
x=106−2201
x=106+2201x=106−2201
Solution
x1=106−2201,x2=106+2201
Alternative Form
x1≈−4.091482,x2≈5.291482
Show Solution
