Question Simplify the expression 40x3−102x2 Evaluate 40x3−34x2×3Solution 40x3−102x2 Show Solution Factor the expression 2x2(20x−51) Evaluate 40x3−34x2×3Multiply the terms 40x3−102x2Rewrite the expression 2x2×20x−2x2×51Solution 2x2(20x−51) Show Solution Find the roots x1=0,x2=2051Alternative Form x1=0,x2=2.55 Evaluate 40x3−34x2×3To find the roots of the expression,set the expression equal to 0 40x3−34x2×3=0Multiply the terms 40x3−102x2=0Factor the expression 2x2(20x−51)=0Divide both sides x2(20x−51)=0Separate the equation into 2 possible cases x2=020x−51=0The only way a power can be 0 is when the base equals 0 x=020x−51=0Solve the equation More Steps Evaluate 20x−51=0Move the constant to the right-hand side and change its sign 20x=0+51Removing 0 doesn't change the value,so remove it from the expression 20x=51Divide both sides 2020x=2051Divide the numbers x=2051 x=0x=2051Solution x1=0,x2=2051Alternative Form x1=0,x2=2.55 Show Solution