Question
Simplify the expression
−54−279n6
Evaluate
42−21−31n6×9−39−36
Multiply the terms
42−21−279n6−39−36
Solution
−54−279n6
Show Solution

Factor the expression
−9(6+31n6)
Evaluate
42−21−31n6×9−39−36
Multiply the terms
42−21−279n6−39−36
Subtract the numbers
21−279n6−39−36
Subtract the numbers
−18−279n6−36
Subtract the numbers
−54−279n6
Solution
−9(6+31n6)
Show Solution

Find the roots
n1=−626162×315−6266×315i,n2=626162×315+6266×315i
Alternative Form
n1≈−0.658661−0.380278i,n2≈0.658661+0.380278i
Evaluate
42−21−31n6×9−39−36
To find the roots of the expression,set the expression equal to 0
42−21−31n6×9−39−36=0
Multiply the terms
42−21−279n6−39−36=0
Subtract the numbers
21−279n6−39−36=0
Subtract the numbers
−18−279n6−36=0
Subtract the numbers
−54−279n6=0
Move the constant to the right-hand side and change its sign
−279n6=0+54
Removing 0 doesn't change the value,so remove it from the expression
−279n6=54
Change the signs on both sides of the equation
279n6=−54
Divide both sides
279279n6=279−54
Divide the numbers
n6=279−54
Divide the numbers
More Steps

Evaluate
279−54
Cancel out the common factor 9
31−6
Use b−a=−ba=−ba to rewrite the fraction
−316
n6=−316
Take the root of both sides of the equation and remember to use both positive and negative roots
n=±6−316
Simplify the expression
More Steps

Evaluate
6−316
To take a root of a fraction,take the root of the numerator and denominator separately
6316−6
Simplify the radical expression
More Steps

Evaluate
6−6
Rewrite the expression
66×(23+21i)
Apply the distributive property
66×23+66×21i
Multiply the numbers
26162+66×21i
Multiply the numbers
26162+266i
63126162+266i
Simplify
26316162+263166i
Rearrange the numbers
More Steps

Evaluate
26316162
Multiply by the Conjugate
2631×63156162×6315
The product of roots with the same index is equal to the root of the product
2631×63156162×315
Multiply the numbers
626162×315
626162×315+263166i
Rearrange the numbers
More Steps

Evaluate
263166
Multiply by the Conjugate
2631×631566×6315
The product of roots with the same index is equal to the root of the product
2631×631566×315
Multiply the numbers
6266×315
626162×315+6266×315i
n=±(626162×315+6266×315i)
Separate the equation into 2 possible cases
n=626162×315+6266×315in=−626162×315−6266×315i
Solution
n1=−626162×315−6266×315i,n2=626162×315+6266×315i
Alternative Form
n1≈−0.658661−0.380278i,n2≈0.658661+0.380278i
Show Solution
