Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
b1=2813−617,b2=2813+617
Alternative Form
b1≈−0.422839,b2≈1.35141
Evaluate
42b2×1−39b=24
Multiply the terms
42b2−39b=24
Move the expression to the left side
42b2−39b−24=0
Substitute a=42,b=−39 and c=−24 into the quadratic formula b=2a−b±b2−4ac
b=2×4239±(−39)2−4×42(−24)
Simplify the expression
b=8439±(−39)2−4×42(−24)
Simplify the expression
More Steps

Evaluate
(−39)2−4×42(−24)
Multiply
More Steps

Multiply the terms
4×42(−24)
Rewrite the expression
−4×42×24
Multiply the terms
−4032
(−39)2−(−4032)
Rewrite the expression
392−(−4032)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
392+4032
Evaluate the power
1521+4032
Add the numbers
5553
b=8439±5553
Simplify the radical expression
More Steps

Evaluate
5553
Write the expression as a product where the root of one of the factors can be evaluated
9×617
Write the number in exponential form with the base of 3
32×617
The root of a product is equal to the product of the roots of each factor
32×617
Reduce the index of the radical and exponent with 2
3617
b=8439±3617
Separate the equation into 2 possible cases
b=8439+3617b=8439−3617
Simplify the expression
More Steps

Evaluate
b=8439+3617
Divide the terms
More Steps

Evaluate
8439+3617
Rewrite the expression
843(13+617)
Cancel out the common factor 3
2813+617
b=2813+617
b=2813+617b=8439−3617
Simplify the expression
More Steps

Evaluate
b=8439−3617
Divide the terms
More Steps

Evaluate
8439−3617
Rewrite the expression
843(13−617)
Cancel out the common factor 3
2813−617
b=2813−617
b=2813+617b=2813−617
Solution
b1=2813−617,b2=2813+617
Alternative Form
b1≈−0.422839,b2≈1.35141
Show Solution
