Question
Solve the equation
y1=0,y2=9891978−3296337,y3=9891978+3296337
Alternative Form
y1=0,y2≈0.164225,y3≈3.835775
Evaluate
43(4−y)×23y2=623y
Multiply
More Steps

Evaluate
43(4−y)×23y2
Multiply the terms
989(4−y)y2
Multiply the terms
989y2(4−y)
989y2(4−y)=623y
Expand the expression
More Steps

Evaluate
989y2(4−y)
Apply the distributive property
989y2×4−989y2×y
Multiply the numbers
3956y2−989y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
3956y2−989y3
3956y2−989y3=623y
Move the expression to the left side
3956y2−989y3−623y=0
Factor the expression
y(3956y−989y2−623)=0
Separate the equation into 2 possible cases
y=03956y−989y2−623=0
Solve the equation
More Steps

Evaluate
3956y−989y2−623=0
Rewrite in standard form
−989y2+3956y−623=0
Multiply both sides
989y2−3956y+623=0
Substitute a=989,b=−3956 and c=623 into the quadratic formula y=2a−b±b2−4ac
y=2×9893956±(−3956)2−4×989×623
Simplify the expression
y=19783956±(−3956)2−4×989×623
Simplify the expression
More Steps

Evaluate
(−3956)2−4×989×623
Multiply the terms
(−3956)2−2464588
Calculate
39562−2464588
y=19783956±39562−2464588
Simplify the radical expression
More Steps

Evaluate
39562−2464588
Add the numbers
13185348
Write the expression as a product where the root of one of the factors can be evaluated
4×3296337
Write the number in exponential form with the base of 2
22×3296337
The root of a product is equal to the product of the roots of each factor
22×3296337
Reduce the index of the radical and exponent with 2
23296337
y=19783956±23296337
Separate the equation into 2 possible cases
y=19783956+23296337y=19783956−23296337
Simplify the expression
y=9891978+3296337y=19783956−23296337
Simplify the expression
y=9891978+3296337y=9891978−3296337
y=0y=9891978+3296337y=9891978−3296337
Solution
y1=0,y2=9891978−3296337,y3=9891978+3296337
Alternative Form
y1=0,y2≈0.164225,y3≈3.835775
Show Solution
