Question
Find the roots
A1=−1−4351,A2=−1+4351
Alternative Form
A1≈−66.96211,A2≈64.96211
Evaluate
4350−2A−A2
To find the roots of the expression,set the expression equal to 0
4350−2A−A2=0
Rewrite in standard form
−A2−2A+4350=0
Multiply both sides
A2+2A−4350=0
Substitute a=1,b=2 and c=−4350 into the quadratic formula A=2a−b±b2−4ac
A=2−2±22−4(−4350)
Simplify the expression
More Steps

Evaluate
22−4(−4350)
Multiply the numbers
More Steps

Evaluate
4(−4350)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4350
Multiply the numbers
−17400
22−(−17400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+17400
Evaluate the power
4+17400
Add the numbers
17404
A=2−2±17404
Simplify the radical expression
More Steps

Evaluate
17404
Write the expression as a product where the root of one of the factors can be evaluated
4×4351
Write the number in exponential form with the base of 2
22×4351
The root of a product is equal to the product of the roots of each factor
22×4351
Reduce the index of the radical and exponent with 2
24351
A=2−2±24351
Separate the equation into 2 possible cases
A=2−2+24351A=2−2−24351
Simplify the expression
More Steps

Evaluate
A=2−2+24351
Divide the terms
More Steps

Evaluate
2−2+24351
Rewrite the expression
22(−1+4351)
Reduce the fraction
−1+4351
A=−1+4351
A=−1+4351A=2−2−24351
Simplify the expression
More Steps

Evaluate
A=2−2−24351
Divide the terms
More Steps

Evaluate
2−2−24351
Rewrite the expression
22(−1−4351)
Reduce the fraction
−1−4351
A=−1−4351
A=−1+4351A=−1−4351
Solution
A1=−1−4351,A2=−1+4351
Alternative Form
A1≈−66.96211,A2≈64.96211
Show Solution
