Question
Solve the equation
v=85365
Evaluate
440=10(315−315v)
Multiply the terms
More Steps

Evaluate
10(315−315v)
Use the the distributive property to expand the expression
10×315+10(−315v)
Multiply the numbers
3150+10(−315v)
Multiply the terms
More Steps

Evaluate
10(−315v)
Multiplying or dividing an odd number of negative terms equals a negative
−10×315v
Cancel out the common factor 5
−2×63v
Multiply the terms
−632v
3150−632v
440=3150−632v
Swap the sides of the equation
3150−632v=440
Move the constant to the right-hand side and change its sign
−632v=440−3150
Subtract the numbers
−632v=−2710
Rewrite the expression
63−2v=−2710
Cross multiply
−2v=63(−2710)
Simplify the equation
−2v=−170730
Change the signs on both sides of the equation
2v=170730
Divide both sides
22v=2170730
Divide the numbers
v=2170730
Solution
More Steps

Evaluate
2170730
Reduce the numbers
185365
Calculate
85365
v=85365
Show Solution
