Question
Simplify the expression
13x2−170xy+13y2
Evaluate
49(x−y)2−36(x+y)2
Expand the expression
More Steps

Calculate
49(x−y)2
Simplify
49(x2−2xy+y2)
Apply the distributive property
49x2−49×2xy+49y2
Multiply the numbers
49x2−98xy+49y2
49x2−98xy+49y2−36(x+y)2
Expand the expression
More Steps

Calculate
−36(x+y)2
Simplify
−36(x2+2xy+y2)
Apply the distributive property
−36x2−36×2xy−36y2
Multiply the numbers
−36x2−72xy−36y2
49x2−98xy+49y2−36x2−72xy−36y2
Subtract the terms
More Steps

Evaluate
49x2−36x2
Collect like terms by calculating the sum or difference of their coefficients
(49−36)x2
Subtract the numbers
13x2
13x2−98xy+49y2−72xy−36y2
Subtract the terms
More Steps

Evaluate
−98xy−72xy
Collect like terms by calculating the sum or difference of their coefficients
(−98−72)xy
Subtract the numbers
−170xy
13x2−170xy+49y2−36y2
Solution
More Steps

Evaluate
49y2−36y2
Collect like terms by calculating the sum or difference of their coefficients
(49−36)y2
Subtract the numbers
13y2
13x2−170xy+13y2
Show Solution

Factor the expression
(13x−y)(x−13y)
Evaluate
49(x−y)2−36(x+y)2
Use a2−b2=(a−b)(a+b) to factor the expression
(7(x−y)+6(x+y))(7(x−y)−6(x+y))
Solution
(13x−y)(x−13y)
Show Solution
