Question
Factor the expression
4(k2−6k−15)
Evaluate
4k2−24k−60
Solution
4(k2−6k−15)
Show Solution

Find the roots
k1=3−26,k2=3+26
Alternative Form
k1≈−1.898979,k2≈7.898979
Evaluate
4k2−24k−60
To find the roots of the expression,set the expression equal to 0
4k2−24k−60=0
Substitute a=4,b=−24 and c=−60 into the quadratic formula k=2a−b±b2−4ac
k=2×424±(−24)2−4×4(−60)
Simplify the expression
k=824±(−24)2−4×4(−60)
Simplify the expression
More Steps

Evaluate
(−24)2−4×4(−60)
Multiply
More Steps

Multiply the terms
4×4(−60)
Rewrite the expression
−4×4×60
Multiply the terms
−960
(−24)2−(−960)
Rewrite the expression
242−(−960)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242+960
Evaluate the power
576+960
Add the numbers
1536
k=824±1536
Simplify the radical expression
More Steps

Evaluate
1536
Write the expression as a product where the root of one of the factors can be evaluated
256×6
Write the number in exponential form with the base of 16
162×6
The root of a product is equal to the product of the roots of each factor
162×6
Reduce the index of the radical and exponent with 2
166
k=824±166
Separate the equation into 2 possible cases
k=824+166k=824−166
Simplify the expression
More Steps

Evaluate
k=824+166
Divide the terms
More Steps

Evaluate
824+166
Rewrite the expression
88(3+26)
Reduce the fraction
3+26
k=3+26
k=3+26k=824−166
Simplify the expression
More Steps

Evaluate
k=824−166
Divide the terms
More Steps

Evaluate
824−166
Rewrite the expression
88(3−26)
Reduce the fraction
3−26
k=3−26
k=3+26k=3−26
Solution
k1=3−26,k2=3+26
Alternative Form
k1≈−1.898979,k2≈7.898979
Show Solution
