Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
n1=−71+141,n2=7−1+141
Alternative Form
n1≈−1.839192,n2≈1.553477
Evaluate
4n−40=7(−2n2)
Multiply the numbers
More Steps

Evaluate
7(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−7×2
Multiply the numbers
−14
4n−40=−14n2
Swap the sides
−14n2=4n−40
Move the expression to the left side
−14n2−4n+40=0
Multiply both sides
14n2+4n−40=0
Substitute a=14,b=4 and c=−40 into the quadratic formula n=2a−b±b2−4ac
n=2×14−4±42−4×14(−40)
Simplify the expression
n=28−4±42−4×14(−40)
Simplify the expression
More Steps

Evaluate
42−4×14(−40)
Multiply
More Steps

Multiply the terms
4×14(−40)
Rewrite the expression
−4×14×40
Multiply the terms
−2240
42−(−2240)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+2240
Evaluate the power
16+2240
Add the numbers
2256
n=28−4±2256
Simplify the radical expression
More Steps

Evaluate
2256
Write the expression as a product where the root of one of the factors can be evaluated
16×141
Write the number in exponential form with the base of 4
42×141
The root of a product is equal to the product of the roots of each factor
42×141
Reduce the index of the radical and exponent with 2
4141
n=28−4±4141
Separate the equation into 2 possible cases
n=28−4+4141n=28−4−4141
Simplify the expression
More Steps

Evaluate
n=28−4+4141
Divide the terms
More Steps

Evaluate
28−4+4141
Rewrite the expression
284(−1+141)
Cancel out the common factor 4
7−1+141
n=7−1+141
n=7−1+141n=28−4−4141
Simplify the expression
More Steps

Evaluate
n=28−4−4141
Divide the terms
More Steps

Evaluate
28−4−4141
Rewrite the expression
284(−1−141)
Cancel out the common factor 4
7−1−141
Use b−a=−ba=−ba to rewrite the fraction
−71+141
n=−71+141
n=7−1+141n=−71+141
Solution
n1=−71+141,n2=7−1+141
Alternative Form
n1≈−1.839192,n2≈1.553477
Show Solution
