Question Solve the equation(The real numbers system) r∈/R Evaluate 4r−3=3×3r4Evaluate 4r−3=9r4Move the expression to the left side 4r−3−9r4=0Solution r∈/R Show Solution Solve the equation(The complex numbers system) r1≈0.552869+0.323562i,r2≈0.552869−0.323562i,r3≈−0.552869+0.711784i,r4≈−0.552869−0.711784i Evaluate 4r−3=3×3r4Multiply the numbers 4r−3=9r4Move the expression to the left side 4r−3−9r4=0Calculate r≈−0.552869−0.711784ir≈−0.552869+0.711784ir≈0.552869−0.323562ir≈0.552869+0.323562iSolution r1≈0.552869+0.323562i,r2≈0.552869−0.323562i,r3≈−0.552869+0.711784i,r4≈−0.552869−0.711784i Show Solution Rewrite the equation 16x2+16y2=81x8+324x6y2+486x4y4+54x4+324x2y6+108x2y2+81y8+54y4+9 Evaluate 4r−3=3(3r4)Evaluate 4r−3=9r4Rewrite the expression 4r−9r4=3Use substitution More Steps Evaluate 4r−9r4To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2 4r−9(x2+y2)2Simplify the expression 4r−9x4−18x2y2−9y4 4r−9x4−18x2y2−9y4=3Simplify the expression 4r=9x4+18x2y2+9y4+3Square both sides of the equation (4r)2=(9x4+18x2y2+9y4+3)2Evaluate 16r2=(9x4+18x2y2+9y4+3)2To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2 16(x2+y2)=(9x4+18x2y2+9y4+3)2Solution 16x2+16y2=81x8+324x6y2+486x4y4+54x4+324x2y6+108x2y2+81y8+54y4+9 Show Solution Graph