Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
t1=−415+557,t2=4−15+557
Alternative Form
t1≈−13.187293,t2≈5.687293
Evaluate
4t2+30t−300=0
Substitute a=4,b=30 and c=−300 into the quadratic formula t=2a−b±b2−4ac
t=2×4−30±302−4×4(−300)
Simplify the expression
t=8−30±302−4×4(−300)
Simplify the expression
More Steps

Evaluate
302−4×4(−300)
Multiply
More Steps

Multiply the terms
4×4(−300)
Rewrite the expression
−4×4×300
Multiply the terms
−4800
302−(−4800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
302+4800
Evaluate the power
900+4800
Add the numbers
5700
t=8−30±5700
Simplify the radical expression
More Steps

Evaluate
5700
Write the expression as a product where the root of one of the factors can be evaluated
100×57
Write the number in exponential form with the base of 10
102×57
The root of a product is equal to the product of the roots of each factor
102×57
Reduce the index of the radical and exponent with 2
1057
t=8−30±1057
Separate the equation into 2 possible cases
t=8−30+1057t=8−30−1057
Simplify the expression
More Steps

Evaluate
t=8−30+1057
Divide the terms
More Steps

Evaluate
8−30+1057
Rewrite the expression
82(−15+557)
Cancel out the common factor 2
4−15+557
t=4−15+557
t=4−15+557t=8−30−1057
Simplify the expression
More Steps

Evaluate
t=8−30−1057
Divide the terms
More Steps

Evaluate
8−30−1057
Rewrite the expression
82(−15−557)
Cancel out the common factor 2
4−15−557
Use b−a=−ba=−ba to rewrite the fraction
−415+557
t=−415+557
t=4−15+557t=−415+557
Solution
t1=−415+557,t2=4−15+557
Alternative Form
t1≈−13.187293,t2≈5.687293
Show Solution
