Question
Solve the equation
Solve for x
Solve for y
x=−2y3
Evaluate
4x×8y=−48
Multiply the terms
32xy=−48
Rewrite the expression
32yx=−48
Divide both sides
32y32yx=32y−48
Divide the numbers
x=32y−48
Solution
More Steps

Evaluate
32y−48
Cancel out the common factor 16
2y−3
Use b−a=−ba=−ba to rewrite the fraction
−2y3
x=−2y3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
4x×8y=−48
Multiply the terms
32xy=−48
To test if the graph of 32xy=−48 is symmetry with respect to the origin,substitute -x for x and -y for y
32(−x)(−y)=−48
Evaluate
32xy=−48
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=−3csc(2θ)r=−−3csc(2θ)
Evaluate
4x×8y=−48
Evaluate
32xy=−48
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
32cos(θ)×rsin(θ)×r=−48
Factor the expression
32cos(θ)sin(θ)×r2=−48
Simplify the expression
16sin(2θ)×r2=−48
Divide the terms
r2=−sin(2θ)3
Simplify the expression
r2=−3csc(2θ)
Evaluate the power
r=±−3csc(2θ)
Solution
r=−3csc(2θ)r=−−3csc(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−xy
Calculate
4x8y=−48
Simplify the expression
32xy=−48
Take the derivative of both sides
dxd(32xy)=dxd(−48)
Calculate the derivative
More Steps

Evaluate
dxd(32xy)
Use differentiation rules
dxd(32x)×y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(32x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
32×dxd(x)
Use dxdxn=nxn−1 to find derivative
32×1
Any expression multiplied by 1 remains the same
32
32y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
32y+32xdxdy
32y+32xdxdy=dxd(−48)
Calculate the derivative
32y+32xdxdy=0
Move the expression to the right-hand side and change its sign
32xdxdy=0−32y
Removing 0 doesn't change the value,so remove it from the expression
32xdxdy=−32y
Divide both sides
32x32xdxdy=32x−32y
Divide the numbers
dxdy=32x−32y
Solution
More Steps

Evaluate
32x−32y
Cancel out the common factor 32
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x22y
Calculate
4x8y=−48
Simplify the expression
32xy=−48
Take the derivative of both sides
dxd(32xy)=dxd(−48)
Calculate the derivative
More Steps

Evaluate
dxd(32xy)
Use differentiation rules
dxd(32x)×y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(32x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
32×dxd(x)
Use dxdxn=nxn−1 to find derivative
32×1
Any expression multiplied by 1 remains the same
32
32y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
32y+32xdxdy
32y+32xdxdy=dxd(−48)
Calculate the derivative
32y+32xdxdy=0
Move the expression to the right-hand side and change its sign
32xdxdy=0−32y
Removing 0 doesn't change the value,so remove it from the expression
32xdxdy=−32y
Divide both sides
32x32xdxdy=32x−32y
Divide the numbers
dxdy=32x−32y
Divide the numbers
More Steps

Evaluate
32x−32y
Cancel out the common factor 32
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Take the derivative of both sides
dxd(dxdy)=dxd(−xy)
Calculate the derivative
dx2d2y=dxd(−xy)
Use differentiation rules
dx2d2y=−x2dxd(y)×x−y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−x2dxdy×x−y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x2dxdy×x−y×1
Use the commutative property to reorder the terms
dx2d2y=−x2xdxdy−y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x2xdxdy−y
Use equation dxdy=−xy to substitute
dx2d2y=−x2x(−xy)−y
Solution
More Steps

Calculate
−x2x(−xy)−y
Multiply the terms
More Steps

Evaluate
x(−xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×xy
Cancel out the common factor x
−1×y
Multiply the terms
−y
−x2−y−y
Subtract the terms
More Steps

Simplify
−y−y
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)y
Subtract the numbers
−2y
−x2−2y
Divide the terms
−(−x22y)
Calculate
x22y
dx2d2y=x22y
Show Solution

Conic
3(y′)2−3(x′)2=1
Evaluate
4x×8y=−48
Move the expression to the left side
4x×8y−(−48)=0
Calculate
More Steps

Calculate
4x×8y−(−48)
Multiply the terms
32xy−(−48)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32xy+48
32xy+48=0
The coefficients A,B and C of the general equation are A=0,B=32 and C=0
A=0B=32C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=320−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 32xy+48=0
32(x′×22−y′×22)(x′×22+y′×22)+48=0
Calculate
More Steps

Calculate
32(x′×22−y′×22)(x′×22+y′×22)+48
Use the commutative property to reorder the terms
32(22x′−y′×22)(x′×22+y′×22)+48
Use the commutative property to reorder the terms
32(22x′−22y′)(x′×22+y′×22)+48
Use the commutative property to reorder the terms
32(22x′−22y′)(22x′+y′×22)+48
Use the commutative property to reorder the terms
32(22x′−22y′)(22x′+22y′)+48
Expand the expression
More Steps

Calculate
32(22x′−22y′)(22x′+22y′)
Simplify
(162×x′−162×y′)(22x′+22y′)
Apply the distributive property
162×x′×22x′+162×x′×22y′−162×y′×22x′−162×y′×22y′
Multiply the terms
16(x′)2+162×x′×22y′−162×y′×22x′−162×y′×22y′
Multiply the numbers
16(x′)2+16x′y′−162×y′×22x′−162×y′×22y′
Multiply the numbers
16(x′)2+16x′y′−16y′x′−162×y′×22y′
Multiply the terms
16(x′)2+16x′y′−16y′x′−16(y′)2
Subtract the terms
16(x′)2+0−16(y′)2
Removing 0 doesn't change the value,so remove it from the expression
16(x′)2−16(y′)2
16(x′)2−16(y′)2+48
16(x′)2−16(y′)2+48=0
Move the constant to the right-hand side and change its sign
16(x′)2−16(y′)2=0−48
Removing 0 doesn't change the value,so remove it from the expression
16(x′)2−16(y′)2=−48
Multiply both sides of the equation by −481
(16(x′)2−16(y′)2)(−481)=−48(−481)
Multiply the terms
More Steps

Evaluate
(16(x′)2−16(y′)2)(−481)
Use the the distributive property to expand the expression
16(x′)2(−481)−16(y′)2(−481)
Multiply the numbers
More Steps

Evaluate
16(−481)
Multiplying or dividing an odd number of negative terms equals a negative
−16×481
Reduce the numbers
−1×31
Multiply the numbers
−31
−31(x′)2−16(y′)2(−481)
Multiply the numbers
More Steps

Evaluate
−16(−481)
Multiplying or dividing an even number of negative terms equals a positive
16×481
Reduce the numbers
1×31
Multiply the numbers
31
−31(x′)2+31(y′)2
−31(x′)2+31(y′)2=−48(−481)
Multiply the terms
More Steps

Evaluate
−48(−481)
Multiplying or dividing an even number of negative terms equals a positive
48×481
Reduce the numbers
1×1
Simplify
1
−31(x′)2+31(y′)2=1
Use a=a11 to transform the expression
−3(x′)2+31(y′)2=1
Use a=a11 to transform the expression
−3(x′)2+3(y′)2=1
Solution
3(y′)2−3(x′)2=1
Show Solution
