Question
Solve the equation
Solve for x
Solve for y
x=2y33
Evaluate
4xy3=6
Rewrite the expression
4y3x=6
Divide both sides
4y34y3x=4y36
Divide the numbers
x=4y36
Solution
x=2y33
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
4xy3=6
To test if the graph of 4xy3=6 is symmetry with respect to the origin,substitute -x for x and -y for y
4(−x)(−y)3=6
Evaluate
More Steps

Evaluate
4(−x)(−y)3
Any expression multiplied by 1 remains the same
−4x(−y)3
Multiply the terms
More Steps

Evaluate
4x(−y)3
Rewrite the expression
4x(−y3)
Multiply the numbers
−4xy3
−(−4xy3)
Multiply the first two terms
4xy3
4xy3=6
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=42sin3(θ)cos(θ)43r=−42sin3(θ)cos(θ)43
Evaluate
4xy3=6
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
4cos(θ)×r(sin(θ)×r)3=6
Factor the expression
4cos(θ)sin3(θ)×r4=6
Simplify the expression
4sin3(θ)cos(θ)×r4=6
Divide the terms
r4=2sin3(θ)cos(θ)3
Evaluate the power
r=±42sin3(θ)cos(θ)3
To take a root of a fraction,take the root of the numerator and denominator separately
r=±42sin3(θ)cos(θ)43
Solution
r=42sin3(θ)cos(θ)43r=−42sin3(θ)cos(θ)43
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−3xy
Calculate
4xy3=6
Take the derivative of both sides
dxd(4xy3)=dxd(6)
Calculate the derivative
More Steps

Evaluate
dxd(4xy3)
Use differentiation rules
dxd(4x)×y3+4x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(4x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x)
Use dxdxn=nxn−1 to find derivative
4×1
Any expression multiplied by 1 remains the same
4
4y3+4x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
4y3+12xy2dxdy
4y3+12xy2dxdy=dxd(6)
Calculate the derivative
4y3+12xy2dxdy=0
Move the expression to the right-hand side and change its sign
12xy2dxdy=0−4y3
Removing 0 doesn't change the value,so remove it from the expression
12xy2dxdy=−4y3
Divide both sides
12xy212xy2dxdy=12xy2−4y3
Divide the numbers
dxdy=12xy2−4y3
Solution
More Steps

Evaluate
12xy2−4y3
Cancel out the common factor 4
3xy2−y3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
3x−y
Use b−a=−ba=−ba to rewrite the fraction
−3xy
dxdy=−3xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9x24y
Calculate
4xy3=6
Take the derivative of both sides
dxd(4xy3)=dxd(6)
Calculate the derivative
More Steps

Evaluate
dxd(4xy3)
Use differentiation rules
dxd(4x)×y3+4x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(4x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x)
Use dxdxn=nxn−1 to find derivative
4×1
Any expression multiplied by 1 remains the same
4
4y3+4x×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
4y3+12xy2dxdy
4y3+12xy2dxdy=dxd(6)
Calculate the derivative
4y3+12xy2dxdy=0
Move the expression to the right-hand side and change its sign
12xy2dxdy=0−4y3
Removing 0 doesn't change the value,so remove it from the expression
12xy2dxdy=−4y3
Divide both sides
12xy212xy2dxdy=12xy2−4y3
Divide the numbers
dxdy=12xy2−4y3
Divide the numbers
More Steps

Evaluate
12xy2−4y3
Cancel out the common factor 4
3xy2−y3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
3x−y
Use b−a=−ba=−ba to rewrite the fraction
−3xy
dxdy=−3xy
Take the derivative of both sides
dxd(dxdy)=dxd(−3xy)
Calculate the derivative
dx2d2y=dxd(−3xy)
Use differentiation rules
dx2d2y=−(3x)2dxd(y)×3x−y×dxd(3x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−(3x)2dxdy×3x−y×dxd(3x)
Calculate the derivative
More Steps

Evaluate
dxd(3x)
Simplify
3×dxd(x)
Rewrite the expression
3×1
Any expression multiplied by 1 remains the same
3
dx2d2y=−(3x)2dxdy×3x−y×3
Use the commutative property to reorder the terms
dx2d2y=−(3x)23dxdy×x−y×3
Use the commutative property to reorder the terms
dx2d2y=−(3x)23dxdy×x−3y
Use the commutative property to reorder the terms
dx2d2y=−(3x)23xdxdy−3y
Calculate
More Steps

Evaluate
(3x)2
Evaluate the power
32x2
Evaluate the power
9x2
dx2d2y=−9x23xdxdy−3y
Calculate
dx2d2y=−3x2xdxdy−y
Use equation dxdy=−3xy to substitute
dx2d2y=−3x2x(−3xy)−y
Solution
More Steps

Calculate
−3x2x(−3xy)−y
Multiply the terms
More Steps

Evaluate
x(−3xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×3xy
Cancel out the common factor x
−1×3y
Multiply the terms
−3y
−3x2−3y−y
Subtract the terms
More Steps

Simplify
−3y−y
Reduce fractions to a common denominator
−3y−3y×3
Write all numerators above the common denominator
3−y−y×3
Use the commutative property to reorder the terms
3−y−3y
Subtract the terms
3−4y
Use b−a=−ba=−ba to rewrite the fraction
−34y
−3x2−34y
Divide the terms
More Steps

Evaluate
3x2−34y
Multiply by the reciprocal
−34y×3x21
Multiply the terms
−3×3x24y
Multiply the terms
−9x24y
−(−9x24y)
Calculate
9x24y
dx2d2y=9x24y
Show Solution
