Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=58−94,x2=58+94
Alternative Form
x1≈−0.339072,x2≈3.539072
Evaluate
4x=2−3−(−x×1)×45x
Calculate
4x=2−3−(−x×1×45x)
Simplify
More Steps

Evaluate
2−3−(−x×1×45x)
Use b−a=−ba=−ba to rewrite the fraction
−23−(−x×1×45x)
Multiply the terms
More Steps

Multiply the terms
−x×1×45x
Rewrite the expression
−x×45x
Multiply the terms
−x2×45
Use the commutative property to reorder the terms
−45x2
−23−(−45x2)
Rewrite the expression
−23+45x2
4x=−23+45x2
Swap the sides
−23+45x2=4x
Move the expression to the left side
−23+45x2−4x=0
Rewrite in standard form
45x2−4x−23=0
Multiply both sides
4(45x2−4x−23)=4×0
Calculate
5x2−16x−6=0
Substitute a=5,b=−16 and c=−6 into the quadratic formula x=2a−b±b2−4ac
x=2×516±(−16)2−4×5(−6)
Simplify the expression
x=1016±(−16)2−4×5(−6)
Simplify the expression
More Steps

Evaluate
(−16)2−4×5(−6)
Multiply
More Steps

Multiply the terms
4×5(−6)
Rewrite the expression
−4×5×6
Multiply the terms
−120
(−16)2−(−120)
Rewrite the expression
162−(−120)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
162+120
Evaluate the power
256+120
Add the numbers
376
x=1016±376
Simplify the radical expression
More Steps

Evaluate
376
Write the expression as a product where the root of one of the factors can be evaluated
4×94
Write the number in exponential form with the base of 2
22×94
The root of a product is equal to the product of the roots of each factor
22×94
Reduce the index of the radical and exponent with 2
294
x=1016±294
Separate the equation into 2 possible cases
x=1016+294x=1016−294
Simplify the expression
More Steps

Evaluate
x=1016+294
Divide the terms
More Steps

Evaluate
1016+294
Rewrite the expression
102(8+94)
Cancel out the common factor 2
58+94
x=58+94
x=58+94x=1016−294
Simplify the expression
More Steps

Evaluate
x=1016−294
Divide the terms
More Steps

Evaluate
1016−294
Rewrite the expression
102(8−94)
Cancel out the common factor 2
58−94
x=58−94
x=58+94x=58−94
Solution
x1=58−94,x2=58+94
Alternative Form
x1≈−0.339072,x2≈3.539072
Show Solution
