Question
Simplify the expression
120x5−28x2
Evaluate
4x2(10x2×3x−7)
Multiply
More Steps

Evaluate
10x2×3x
Multiply the terms
30x2×x
Multiply the terms with the same base by adding their exponents
30x2+1
Add the numbers
30x3
4x2(30x3−7)
Apply the distributive property
4x2×30x3−4x2×7
Multiply the terms
More Steps

Evaluate
4x2×30x3
Multiply the numbers
120x2×x3
Multiply the terms
More Steps

Evaluate
x2×x3
Use the product rule an×am=an+m to simplify the expression
x2+3
Add the numbers
x5
120x5
120x5−4x2×7
Solution
120x5−28x2
Show Solution

Find the roots
x1=0,x2=3036300
Alternative Form
x1=0,x2≈0.615638
Evaluate
4x2(10x2×3x−7)
To find the roots of the expression,set the expression equal to 0
4x2(10x2×3x−7)=0
Multiply
More Steps

Multiply the terms
10x2×3x
Multiply the terms
30x2×x
Multiply the terms with the same base by adding their exponents
30x2+1
Add the numbers
30x3
4x2(30x3−7)=0
Elimination the left coefficient
x2(30x3−7)=0
Separate the equation into 2 possible cases
x2=030x3−7=0
The only way a power can be 0 is when the base equals 0
x=030x3−7=0
Solve the equation
More Steps

Evaluate
30x3−7=0
Move the constant to the right-hand side and change its sign
30x3=0+7
Removing 0 doesn't change the value,so remove it from the expression
30x3=7
Divide both sides
3030x3=307
Divide the numbers
x3=307
Take the 3-th root on both sides of the equation
3x3=3307
Calculate
x=3307
Simplify the root
More Steps

Evaluate
3307
To take a root of a fraction,take the root of the numerator and denominator separately
33037
Multiply by the Conjugate
330×330237×3302
Simplify
330×330237×3900
Multiply the numbers
330×330236300
Multiply the numbers
3036300
x=3036300
x=0x=3036300
Solution
x1=0,x2=3036300
Alternative Form
x1=0,x2≈0.615638
Show Solution
