Question  
 Solve the quadratic equation
Solve using the quadratic formula
 Solve by completing the square
 Solve using the PQ formula
 x1=2−2,x2=2+2
Alternative Form
 x1≈0.585786,x2≈3.414214
Evaluate
4x2−16x=−8
Move the expression to the left side
4x2−16x+8=0
Substitute a=4,b=−16 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=2×416±(−16)2−4×4×8
Simplify the expression
x=816±(−16)2−4×4×8
Simplify the expression
        More Steps
        
Evaluate
(−16)2−4×4×8
Multiply the terms
        More Steps
        
Multiply the terms
4×4×8
Multiply the terms
16×8
Multiply the numbers
128
(−16)2−128
Rewrite the expression
162−128
Evaluate the power
256−128
Subtract the numbers
128
x=816±128
Simplify the radical expression
        More Steps
        
Evaluate
128
Write the expression as a product where the root of one of the factors can be evaluated
64×2
Write the number in exponential form with the base of 8
82×2
The root of a product is equal to the product of the roots of each factor
82×2
Reduce the index of the radical and exponent with 2
82
x=816±82
Separate the equation into 2 possible cases
x=816+82x=816−82
Simplify the expression
        More Steps
        
Evaluate
x=816+82
Divide the terms
        More Steps
        
Evaluate
816+82
Rewrite the expression
88(2+2)
Reduce the fraction
2+2
x=2+2
x=2+2x=816−82
Simplify the expression
        More Steps
        
Evaluate
x=816−82
Divide the terms
        More Steps
        
Evaluate
816−82
Rewrite the expression
88(2−2)
Reduce the fraction
2−2
x=2−2
x=2+2x=2−2
Solution
x1=2−2,x2=2+2
Alternative Form
x1≈0.585786,x2≈3.414214
        Show Solution
        